Fault Tolerant Air Data System
An integrated airspeed and angle of attack sensor failure detection identification, isolation and accommodation scheme is proposed. The system uses information from the inertial measurement unit, available air data sensors, and an aircraft digital twin that provides virtual measurements of the aircraft’s aerodynamic and propulsion forces to feed a nonlinear estimator capable of detecting air sensor failure and suppress its effect on the aircraft air data prediction.
UAV for research in Flight Mechanics and Control
A UAV was developed for research in Flight Mechanics and Flight Controls. The project consists of the integration of a set of sensors with an embedded processor in a small fixed-wing aircraft and the development of a flexible software infrastructure for the implementation and testing of flight control algorithms. The sensor suite consists of an IMU, a magnetometer, a GPS, a pitot tube with a differential pressure sensor, alpha and beta vanes, control surface position sensors, and a sensor for engine RPM. An actuator interface and RF communication link are also included to allow telecommand and telemetry.
Flight Data Recorder for acquisition of flight test data in a ultra light aircraft
A flight data recording system was developed for an ultralight aircraft. The aircraft was instrumented to record data from certification flight tests and for mathematical modeling of the aircraft.
Structure Manager, a software infrastructure for the implementation of Real Time Control Systems
A software infrastructure for the implementation of real time control systems have been developed in C language. The Structure Manager is composed of a library that implements all the infrastructure functionality and a tool to generate code automatically at compilation time, that connects the infrastructure with the application at hand. The infrastructure, combined with a sound programming methodology (object oriented like) enables some powerful features in the real time application accelerating the production cycle of the software.
Andean Condor UAV
The Andean Condor unmanned aerial system is a tactical UAV for surveillance, exploration, reconnaissance, intelligence. Possible applications in photogrammetry and precision agriculture are also considered. This development is the result of the project “Development of a fixed-wing unmanned aerial system for short-range missions – Aura Jr” (2007-2009).
Software for modeling, analysis and design of a fixed wing aircraft
Software has been developed for the modeling, analysis and design of a fixed wing aircraft. The software is composed of a set of functions written in the Matlab® m language and is fully compatible with Octave. There is also a set of simulation models developed in Simulink® that include the simulation of the aircraft non-linear model with the flight control system. There are several versions of the simulation model, some more refined than others.
VISOR 3 ROV
VISOR 3 is an ROV developed by the Almirante Padilla Naval Cadet School (ENAP) and Universidad Pontificia Bolivariana (UPB), through the research groups in Naval Engineering (GIIN), Automation and Design A+D and the Institute of Energy and Thermodynamics (IET), with the support of Colciencias. The ROV is an underwater robotic platform for inspecting port structures and hulls of transport vessels, in order to comply with the ISPS code.
Aura Jr UAV
Aura Jr was a small UAV for short-range missions. This was the first UAV developed at the Universidad Pontificia Bolivariana. This was a prototype built as a technology demonstrator for the project “Research and Design of an Automatic Remote Inspection System for Electric Power Transmission Lines” (2004-2005) sponsored by Interconectado Eléctrica SA (ISA), Colciencias and Universidad Pontificia Bolivariana. It was the starting point of the project “Development of a fixed-wing unmanned aerial system for short-range missions – Aura Jr” (2007-2009).
Preliminary design of Aura UAV for monitoring of Power Transmission Lines
The preliminary design of the Aura UAV was the result of the project “Research and Design of an Automatic Remote Inspection System for Electric Power Transmission Lines” (2004-2005) had as its main objective to investigate and design the prototype of an autonomous inspection system for high and extra high voltage transmission lines.
Adaptive Mode Transition Control Architecture With an Application to Unmanned Aerial Vehicles
A new approach to the adaptive mode transition control of unmanned aerial vehicles was proposed. The proposed architecture consists of three levels: the highest level is occupied by mission planning routines where information about way points the vehicle must follow is processed, The mid-level controller uses a trajectory-planning component to coordinate the task execution and provides set points for low-level stabilizing controllers. The adaptive mode transitioning control algorithm resides at the lowest level of the hierarchy consisting of a mode transitioning controller and the accompanying adaptation mechanism. A flight demonstration was done as part of a DARPA sponsored research program to validate the control algorithms using the GTmax, the Georgia Tech UAV testbed.
VISOR 2 ROV
VISOR 2 was an ROV developed as an underwater vehicle with dual control (1998-2000). The project was led by Julio Cesar Correa Rodríguez, Luis Benigno Gutiérrez Zea and Laszlo Jurko.
Neural Network Control of a Flexible Link
A neural network (NN) tracking controller was implemented on a single flexible link and the performance results of the neural network controller were compared to that of proportional derivative (PD) and proportional integral derivative (PID) standard controllers. The NN controller is composed of an outer PD tracking loop, a singular perturbation inner loop for stabilization of the fast flexible-mode dynamics, and an NN inner loop used to feedback linearize the slow pointing dynamics. No off-line training or learning is needed for the NN. It is shown that the tracking performance of the NN controller is far better than that of the PD or PID standard controllers. An extra friction term was added in the tests to demonstrate the ability of the NN to learn unmodeled nonlinear dynamics.