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Abstract
This paper reviews aspects of unmanned aerial vehicle (UAV) autonomy as suggested by the Autonomous Control Logic chart of the U.S.

DoD UAV autonomy roadmap; levels of vehicle autonomy addressed through intelligent control practices and a hierarchical/intelligent

control architecture are presented for UAVs. Basic modules of the control hierarchy and their enabling technologies are reviewed; of special

interest, from an intelligent control perspective, are the middle and high echelons of the hierarchy. Here, mission planning, trajectory

generation and vehicle navigation routines are proposed for the highest level. At the middle level, the control role is portrayed by mode

transitioning, envelope protection, real-time adaptation and fault detection/control reconfiguration algorithms which are intended to safeguard

the UAV’s integrity in the event of component failures, extreme operating conditions or external disturbances. The UAV thus exhibits

attributes of robustness and operational reliability assuring a satisfactory degree of autonomy. The control technologies are demonstrated

through flight testing results.
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1. Introduction

Recent world events have highlighted the utility of

unmanned aerial vehicles (UAVs) for both military and

potential civilian applications. However, the reliability of

these systems has been disappointing in practice. According

to a recent report, nearly half of the current-generation

unmanned surveillance aircraft built have been lost. This

loss-rate is about 10 times worse than manned combat

aircraft. Clearly these numbers are driven in part by the

dangerous missions these aircraft are tasked with, but there

are other factors at work here. In manned aircraft, the pilot

functions as the central integrator of the onboard subsystems

and works to mitigate problems when they occur. Although

‘‘human error’’ is attributed as the most common cause of
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aviation accidents, human pilots are also simultaneously the

most important safety-enhancing component on a manned

aircraft.

To address this and other related UAV control issues, the

Defense Advanced Research Projects Agency (DARPA) and

the U.S. Air Force Research Laboratory (AFRL) have

launched a major initiative to develop revolutionary new

Software Enabled Control (SEC) systems with applications

to intelligent UAVs (DARPA, 2004).

Beyond the responsibility of responding to unexpected

system faults, the SEC program is also charged with making

these machines more agile, thus helping them avoid hostile

actions without exceeding critical flight parameters. This has

the potential to improve the loss-rate for even the most

dangerous missions.

The SEC program includes 16 organizations divided into

SEC technology developers of control-related algorithms and

SEC developers of the software infrastructure platform that

enables the design and implementation of advanced control

methods. The organizations include: Boeing Phantom Works,

University of California at Berkeley, California Institute of
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Technology, the Charles Stark Draper Laboratory, Cornell

University, Georgia Institute of Technology, Honeywell

Laboratories, Massachusetts Institute of Technology, North-

rop-Grumman Corporation, University of Minnesota, Oregon

Research Institute, Rockwell Science Center, Stanford

University, Stanford Research Institute, Scientific Systems

Company, Inc., and Vanderbilt University.

Improved performance of UAVs is expected to be

achieved when such vehicles are endowed with levels of

autonomy that will allow them to operate safely and robustly

under external and internal disturbances, to be able to

accommodate fault conditions without significant degrada-

tion of their performance, to adapt to unexpected events and

to coordinate/cooperate among themselves to accomplish

mission objectives. Fig. 1 depicts the expected UAV

autonomy capabilities according to the U.S. DoD’s UAV

autonomy roadmap (DoD, 2002).

In this paper, we suggest the hardware, software and

control technologies aimed to achieve such autonomy

objectives. The paper has the following structure: we begin

in Section 2 with a description of the overall mission

intelligence flow. Mission planning and a modified A* search

algorithm for route planning are described in Section 3. The

hardware, software and avionics configuration of our test

vehicle, the Georgia Tech RMAX helicopter is presented in

Section 4. Section 5 introduces the Open Control Platform

(OCP), a real-time middleware platform that enables the

development, demonstration and evaluation of advanced

UAV control systems. In Sections 6 and 7, we focused on

two control technologies, namely the adaptive mode

transition control (AMTC) and fault tolerant control.

Detailed controller architecture and algorithms design

information is described and flight test results are presented.

Conclusion and remarks on future research directions are

given in Section 8.
Fig. 1. Autonomous control level trend.
2. Mission intelligence flow

A hierarchical control structure for mission intelligence

flow is illustrated in Fig. 2. Situation awareness is used for

mission planning and flight mode selection, which

constitutes the high level control elements. For inhabited

aircraft the pilot and other crewmembers provide the

intelligence for interpreting the data from a variety of

sources to execute these functions. Much of this data is used

in pre-flight or pre-mission planning and is updated onboard

as the mission proceeds. As the mission segments are

executed and abnormal events are encountered, flight mode

switching takes place which constitutes the mid level control

element. On an inhabited aircraft the pilot flies the aircraft

and makes necessary mode switching and control reconfi-

guration decisions for implementation through the use of the

flight control system. This constitutes the low-level control

element and is used to execute the smooth transition between

modes of flight, i.e., transition from hover or take-off to level

flight, etc., and stay within the flight envelope of the UAVs.

External abnormal conditions cause the pilot to take

corrective action, such as avoiding an obstacle or evading

a target or threat. Internal abnormal conditions can also

occur, such as a failure or malfunction of a component

onboard the aircraft. Once again the pilot provides the

intelligence to take the corrective action by reconfiguring

his/her set of controls to safely continue to fly or land the

aircraft.

Without a pilot onboard the aircraft a UAV must either be

controlled from the ground by a radio control ground pilot or

the UAV must have its own intelligence to fly autonomously.

Executing a vertical take-off and landing (VTOL) UAV

mission autonomously has been demonstrated by both the

Georgia Tech and Sikorsky Aircraft UAVs in the Army’s

Advanced Scout Rotorcraft Testbed (ASRT) Project

(Schrage et al., 1997). However, both of the aircraft were

not able to use the entire flight envelope capability of the

UAVs, largely limited by the control algorithms imple-
Fig. 2. Mission intelligence flow.
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mented. In addition, the control algorithms were very much

customized for the particular vehicle’s characteristics and

were developed in very much of a trial and error approach.

Also, the computing architecture onboard the aircraft did not

provide the environment for reusability and reconfigur-

ability, let alone for plug and play of different SEC

algorithms (Schrage & Vachtsevanos, 1999).
3. Mission planning

Fig. 3 depicts the configuration of the mission planner.

The high level supervisory controller receives mission

commands from the command and control post and

decomposes them into sub-missions which will then be

assigned to connected function modules. Upon reception of

start and destination points from the supervisory controller,

the route planner generates the ‘‘best’’ route in the form of

waypoints for the UAV to follow. A database of the terrain in

the form of a digitized map is available to the route planner

(Vachtsevanos, Kim, Al-Hasan, Rufus, Simon, Schrage,

et al., 1997).

The configuration of the route planner is depicted in

Fig. 4. The digitized map is in the form of a mesh of equal

square cells, where each cell is either free or occupied by an
Fig. 3. The mission plan

Fig. 4. The route plann
obstacle. Having two free cells (i.e., a start and a destination)

assigned by the supervisory module, the A* search engine

searches the map mesh and plans a cell-based route that

extends from the start cell to the destination cell and avoids

stationary obstacles. The generated cell route is suboptimal

in terms of distance, safety and maneuvering (e.g., turning

angles), i.e.,

route cost ¼ðWd � distanceÞ þ ðWh � hazardÞ
þ ðWm �maneuveringÞ;

where Wd, Wh, and Wm are weights for the three cost

components, and are assigned by the supervisory module

based on the objectives and circumstances of the mission.

The cost elements are expressed as fuzzy membership

functions reflecting the inherent uncertainty associated with

the planned trajectory, the obstacles along the path and the

maneuvers the vehicle is required to perform as it navigates

through the terrain. A* uses heuristic knowledge about the

closeness of the goal state from the current state to guide the

search. The cost of every searched cell, n, is composed of

two components:

costðnÞ ¼ kg� gðnÞ þ kh� hðnÞ;

where g(n) is the cost of the least-cost route (found in the

search so far) from the start cell to cell n, h(n) the heuristic
ning configuration.

er configuration.
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Fig. 5. Flow chart of the route planner.
(i.e., estimated) cost of the minimum-cost route from cell n

to the destination cell, and kg, kh are the weighting factors

for g(n) and h(n), respectively. Given a search state space,

an initial state (start node) and final state (goal node), A*

will find the optimal (least cost) path from the start node to

the goal node, if such a path exists (Vachtsevanos, Kim,

Al-Hasan, Rufus, & Simon, 1997). The generated cell

route is further optimized and smoothed by a filtering

algorithm.

The filtered route is a series of consecutive waypoints that

the UAV can navigate through. The supervisory module

reads the objectives and the status of the mission and based

on that it configures the search engine and assigns weights to

the route’s three cost components. Furthermore, the super-
Fig. 6. Four planned unfiltered routes: (a) minimum distance; (b) minimum

distance + hazard).
visory module chooses the start and the destination cells for

the search engine depending on the current status of the

UAV, i.e., whether it is stationary or already navigating

towards a destination and needs to be redirected to another

destination. The learning-support module acquires route

cost data from the search engine at certain map landmarks

and updates a cost database that is used later to provide

better heuristics to guide the search engine.

Fig. 5 illustrates in a flow chart the route planning

implementation steps. Typical route planning results for an

UAV with actual mapping data is shown in Fig. 6. The

interested reader can refer to Al-Hasan and Vachtsevanos

(2002) for more details regarding the route planner

algorithms and design.
4. Flight testing: GTMax research UAV

The GTMax research UAV system (Fig. 7), developed at

the Georgia Institute of Technology to support SEC and

other ongoing programs, utilizes a Yamaha R-Max

helicopter, a modular/open avionics system, Open Control

Platform, a set of baseline onboard software, and a series of

simulation tools. The baseline systems enable autonomous

flight of the normally remotely piloted aircraft. The R-Max

configured with these systems is known as the GTMax, a

highly effective UAV research vehicle that has a design

based on lessons learned from UAV research at academic

institutions such as Georgia Tech, University of California at

Berkeley, Massachusetts Institute of Technology, and

Carnegie Mellon University for more than 10 years.
hazard (or maximum safety); (c) minimum maneuvering; (d) minimum



G. Vachtsevanos et al. / Annual Reviews in Control 29 (2005) 101–115 105

Fig. 7. GTMax helicopter in flight, Georgia Tech’s test bed research UAV.
Developed in Japan, the basic Yamaha R-Max helicopter

has a rotor diameter of 10.2 ft, a 21 hp two-cylinder engine,

and weighs 125 lb. The weight increases to 160 lb when

configured with typical GTMax avionics. It is capable of

carrying approximately 50 additional pounds of research

equipment. It also has a generator, starter, and can be flown

manually by a remote pilot in sight of the helicopter or by an

onboard autopilot.
� B
asic Yamaha R-Max dimensions:

- maximum length: 3630 mm (rotor blade included);

- fuselage length: 2750 mm;

- width: 720 mm;

- height: 1080 mm;

- fuel tank: 6 L;

- main rotor diameter: 3115 mm;

- tail rotor diameter: 545 mm;

- maximum gross weight: 93 gN;

- maximum payload: 30 gN.
� P
owerplant:

- type: gasoline 2 cycles;

- cylinder configuration: horizontal opposition 2 cylin-

der;

- displacement: 246 cm3;

- engine RPM. 6350 RPM (nominal);

- maximum power output: 15.4 kW (21PS);

- maximum torque: 25.5 Nm;

- cooling type: liquid cooling;

- fuel: auto gas.
The GTMax avionics system hardware consists of a set

of modules that can be added/removed as required for a

flight test. All modules include electro-magnetic inter-

ference protection and their own power regulation. The

modules are mounted in a vibration-isolated rack within an

enclosure under the fuselage. The basic system includes a

general-purpose computer, Differential Global Positioning

System (D-GPS), an inertial measurement unit, an ultra-

sonic altimeter, a three-axis magnetometer, and two

wireless data links. Other flight configurations used to
date have also utilized a second general purpose computer,

cameras, a radar altimeter, and video capture/compression

hardware. The basic ground equipment includes the data

links, a GPS reference station, and one or more laptop

computers.

The baseline onboard software includes interfaces to the

sensors, an integrated navigation filter, and a nominal

trajectory-following autopilot. This allows the baseline

system to fly a prescribed mission on its own, including

the take-off and landing. The role of the human operator can

be to set the desired flight path, start the engine, monitor the

flight, and to shut down the engine after landing. This enables

a large number of relevant flight control scenarios to be tested,

from purely manual control to autonomous operations.

Most high and middle level control components are

running on the secondary computer. The implementation of

these controls modules and the interface and communication

with the primary computer are based on the Open Control

Platform.
5. The Open Control Platform

The Open Control Platform is being developed for use as

a software platform enabling demonstration and evaluation

of advanced UAV control systems technologies being

developed for the DARPA Software Enabled Control

program. The OCP enabling software technology is being

developed by a team from industry and academia, led by

Boeing Phantom Works, and including the Georgia Institute

of Technology, Honeywell, Laboratories, and the University

of California Berkeley. The OCP provides a middleware-

base execution framework, Application Programmer Inter-

faces (APIs) simulation tools, and integration with useful

software and control systems design and development tools.

It also provides the distributed control and reconfigurable

architecture that allows control and intelligence algorithms

at all levels and timescales to interact in a decoupled, real-

time and distributed fashion. A schematic of the required

distributed control reconfigurability is illustrated in Fig. 8.

As illustrated, the controller strategy interfaces with the

UAV dynamic configuration, either through simulation or

the hardware testbed through the OCP.

The OCP consists of multiple layers of APIs that increase

in abstraction and become more domain specific at the

higher layers (Guler, Clements, Wills, Heck, & Vachtseva-

nos, 2003), as shown in Fig. 9. At each level, the abstract

interfaces are defined to provide access to the underlying

functionality while hiding details of how that functionality is

implemented. Each layer builds on the components defined

in lower layers.

The layers of the OCP are intended to form a bridge from

the controls domain to distributed computing and reconfi-

gurability technologies so that controls engineers can exploit

these technologies without being experts in computer

science.
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Fig. 8. Distributed control functionality.
In the bottommost ‘‘core’’ layer, the OCP leverages and

extends new advances in real-time distributed object

oriented computing that allow distributed components to

communicate asynchronously in real time (Levine, Gill, &

Schmidt, 1998; Levine, Mungee, & Schmidt, 1998; Schmidt

& Kuhns, 2000; Schmidt, Levine, & Harrison, 1997). It also

supports highly decoupled interaction among the distributed

components of the system, which tends to localize

architectural or configuration changes so that they can be

made quickly and with high reliability.

The middle ‘‘reconfigurable controls’’ layer provides

abstractions for integrating and reconfiguring control system

components; the abstractions bridge the gap between the

controls domain and the core distribution substrate (Wills,
Fig. 9. Layers of the OCP.
Kannan, et al., 2000; Wills, Sander, et al., 2000). The

abstract interface is based on familiar control engineering

concepts, such as block diagram components, input and

output ports, and measurement and command signals. It

allows real-time properties to be specified on signals that

translate to quality-of-service (QoS) constraints in the core

real-time distribution substrate. It also allows run-time

changes to be made to these signal properties, which are then

handled by lower-level dynamic scheduling and resource

management mechanisms (Cardei, Cardei, Jha, & Pavan,

2000). This layer raises the conceptual level at which the

controls engineer integrates and reconfigures complex,

distributed control systems.

The third ‘‘hybrid controls’’ layer supports reconfigura-

tion management by making reconfiguration strategies and

rationale for reconfiguration decisions explicit and reusable.

It contains generic patterns of integration and reconfigura-

tion that are found in hybrid, reconfigurable control systems.

It can be specialized with logic for choosing reconfigura-

tions as well as signal blending strategies for smoothly

transitioning from one configuration to another. This is

critical to hybrid systems in which continuous dynamics

must be maintained between discrete reconfiguration events

and where multiple control and blending strategies are

applicable.

These aforementioned OCP capabilities and features are

being delivered to the control systems technology teams on

the SEC program, to provide them with a platform to

enable rapid development, test and migration of advanced

control systems designs to embedded software. (Wills,

Kannan, et al., 2000; Wills, Sander, et al., 2000; Wills

et al., 2001).

In the spring of 2002, Georgia Institute of Technology

and Boeing demonstrated elements of the OCP in flight

successfully. In the demonstration, using the Georgia Tech

research UAV helicopter GTMax described above, the

system successfully compensated for the simulated in-flight

failure of a low-level flight control system by reconfiguring

the software systems on its own. Since then, the OCP has

become an implementation and integration platform for our

UAV research activities. Flight tests also demonstrated the

ability of the OCP to manage sensing, flight control

algorithms and actuators to allow autonomous dynamic low-

level flight control reconfiguration, as well as airborne real-

time plug-and-play of external controllers developed by the

SEC control developers from different organizations. The

OCP is proven to represent an advance in open systems able

to handle large volumes of data and computations in real

time.

Illustrated in Fig. 10 at the mid-level are SEC algorithm

approaches developed at Georgia Tech for implementation

through the OCP: adaptive limit detection and avoidance

(Yavrucuk, Unnikrishnan, & Prasad, 2003), adaptive mode

transition controller, fault detection, and fault tolerant

control reconfiguration, which will be discussed in following

sections.
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Fig. 10. Hierarchical control architecture and Open Control Platform

(OCP).

Fig. 11. AMTC hierarchical control architecture.
6. UAV adaptive mode transition control

Control of autonomous aerial vehicles presents unique

challenges not only in the design of control algorithms, but

also in the strategies and methodologies used to integrate

and implement those algorithms on the actual vehicles. We

propose an approach to the adaptive mode transition

control of UAVs. The main objective of this architecture is

to improve the degree of autonomy/intelligence of the

UAV and its performance under uncertain conditions, for

instance when external perturbations are present. The

architecture is based on concepts developed in (Rufus,

2001; Rufus, Heck, & Vachtsevanos, 2000; Rufus,

Vachtsevanos, & Heck, 2000, 2002) where the adaptive

mode transition control scheme was first introduced. Here,

we suggest a new approach to the adaptive mode transition

control problem and we are introducing a hierarchical

architecture to implement it. The algorithms have been

implemented and tested using the Open Control Platform

and validated by flight tests on GTMax (Gutierrez,

Vachtsevanos, & Heck, 2003a, 2003b).

Here are some definitions used in this section: a local

mode is a region of the state space around an operating point

in which the vehicle exhibits quasi steady-state behavior. A

local controller is a controller that guarantees the stability

and tracking performance of the closed loop system for any

feasible reference trajectory in a local mode. A transition

region is a region of the state space outside any local mode

that includes all the feasible trajectories between two local

modes. The operating region is the region of the state space

generated by the union of all the local modes and transition

regions.
The proposed architecture for the control of UAV’s

consists of a hierarchy of three levels as depicted in Fig. 11.

At the highest level, the mission planning component stores

information about the overall mission, generates a low-level

representation of that mission, and coordinates its execution

with the middle level. The middle level includes a trajectory

planning component, which receives information from the

high level in terms of the next task to be executed to fulfill

the mission, and generate the trajectory (set points) for the

low-level controller. Mode transition manager (MTM)

coordinates mode selection, switching and transition

automatically based on the actual state of the vehicle. At

the lowest level, an adaptive mode transition controller

coordinates the execution of the local controllers (one for

each local mode) or the active control models (one for each

transition), which stabilize the vehicle and minimize the

errors between the set points generated by the middle level

and the actual state of the vehicle. The adaptive mode

transition control consists of the mode transition control

component and the adaptation mechanism component.

Fig. 12 shows the structure of the proposed adaptive mode

transition control (AMTC) algorithm, where Ci is the

controller for local mode i.

6.1. Mode transition manager

The mode transition manager coordinates the transi-

tions. Unlike the previous work (Rufus, 2001; Rufus,

Heck, et al., 2000; Rufus, Vachtsevanos, et al., 2000; Rufus

et al., 2002) where the transitions were pre-scheduled and
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Fig. 12. Adaptive mode transition control.
a Mode Selector module coordinated the transitions, the

MTM coordinates the transitions automatically based on

the actual state of the vehicle. In order to accomplish this

task, a Mode Membership Function is defined for each

local mode and the MTM determines which local mode or

transition should be activated relying upon these con-

structs.

For local mode i the Mode Membership Function is

defined as:

mi ¼ e�ðx�miÞTST
i Siðx�miÞ (1)

where x is the state of the vehicle, mi the center (operating

state) of the mode, and Si is the positive semi-definite

diagonal matrix whose elements represent the inverse

of the deviations for each component of x for that

mode.

To determine which mode is active, the MTM computes

the Mode Membership Functions for all local modes. If

ml(x(k)) � 0.5 for the actual state, then local mode l will be

active. Mode centers and deviations are defined so that

ml(x(k)) � 0.5 can be valid for only one l. That way the

modes correspond to disjoint regions of the state space. If

ml(x(k)) < 0.5 for all l, then the transition corresponding to

the two modes with the highest Mode Membership Function

values will be active.

When a local mode is active, the corresponding local

controller is used to compute the control output whereas

when a transition is active, the corresponding active control

model (ACM) is used to compute the control output. When a

faulty mode is detected by the fault detection and

identification (FDI) component, the system will transition

to a fault tolerant control mode, where corresponding control

reconfiguration tasks are executed.
6.2. Local controllers

The local controllers are of the discrete time tracking

variety running at a fixed sample rate. The control law for

these controllers is given by:

uðkÞ ¼ KieðkÞ þ utrim;i (2)

where k represents the discrete time, u(k) is the actuator

command vector, e(k) the error between the desired state (set

point) generated by the trajectory planning component

(xd(k)) and the actual state of the vehicle obtained from

onboard sensors (x(k)). The parameters for local controller i

are the matrix gain Ki, and the trim value of the actuator

command utrim,i.

The state of the vehicle is given by:

xðkÞ ¼ ½x; y; z;f; u;c; u; v;w; p; q; r
T

where x: x-position (ft, measured northwards); y: y-position

(ft, measured eastwards); z: z-position (ft, measured down-

wards); f: roll angle (rad); u: pitch angle (rad); c: yaw angle

(rad); u: x-velocity (ft/s); v: y-velocity (ft/s); w: z-velocity

(ft/s); p: roll rate (rad/s); q: pitch rate (rad/s); r: yaw rate (rad/

s).

The actuator command vector is given by

uðkÞ ¼ ½dt; dcoll; dlon; dlat; dtr
T;

where dt: throttle; dcoll: collective; dlon: longitudinal cyclic

(moment actuator for pitch); dlat: lateral cyclic (moment

actuator for roll); dtr: pedal (moment actuator for yaw).

A transformation is performed on x(k) and xd(k), before

the control algorithms are applied, to make them indepen-

dent of the actual heading of the vehicle. That is, if cx is the

actual value of the heading in x(k), then the transformed

values are obtained by

xðkÞ TðxðkÞ;cxÞ
xdðkÞ TðxdðkÞ;cxÞ

(3)

where

TðxðkÞ;cxÞ ¼ ½xcx
; ycx

; z;f; u;c� cx; ucx
; vcx

;w; p; q; r
T

with

xcx

ycx

� �
¼ AðcxÞ

x
y

� �
;

uCx

vCx

� �
¼ AðcxÞ

u
v

� �

AðcxÞ
cos ðcxÞ sin ðcxÞ
�sin ðcxÞ cos ðcxÞ

� �

After the transformation, the tracking error is given by

eðkÞ ¼ xdðkÞ � xðkÞ (4)

To improve the tracking performance of the local

controllers, they are augmented with an integral part;

therefore, the dynamics of the system is augmented with

integrators for position, heading, and rotor angular velocity.
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This is equivalent to designing the controllers for a system

with state vector

xðkÞ ¼
� Z

x;

Z
y;

Z
z;

Z
f;

Z
V; x; y; z;f; u;c; ẋ; ẏ; ż;

ḟ; u̇; ċ;V

�T

The error in (4) is computed based on this augmented

state vector.

The design procedure for the local controllers is as follows:

once the operating state of a mode is decided, an approximate

model of the vehicle is linearized about that state, and then

discretized. A linear quadratic regulator is computed for the

matrix gain Ki and the same design procedure is used for each

mode. When an approximate model of the vehicle is not

available, the linearized model could be obtained from a

Fuzzy Neural Net (FNN) model trained with input–output

data from the actual vehicle in the same way as with the active

plant models to be discussed later.

6.3. Active control models

The active control models are in charge of the transitions

between local modes. The function of an active control

model is to blend the outputs of the local controllers

corresponding to one transition in a smooth and stable way,

that is, the blending of the local controllers should not

deteriorate the overall performance of the closed loop

system. Every ACM is linked to the local controllers

corresponding to the transition, has access to their outputs,

and also includes a Fuzzy Neural Net that generates the

blending gains to compute the control output, as depicted in

Fig. 13.

The FNN has the same structure as in (Rufus, 2001;

Rufus et al., 2002), but its learning capabilities have been

improved via a new recursive least squares training

algorithm (Gutierrez, 2004). The input of the FNN is the

actual state of the vehicle, x(k), after the transformation

given in (3).

Therefore, the output of the lth ACM module is

determined from

blendingGains ¼ FNNACMl
ðxðkÞÞ

uðkÞ ¼ blendingGainsð1ÞuiðkÞ þ blendingGainsð2Þu jðkÞ
(5)
Fig. 13. Active control models structure.
where FNNACMl
represents the function implemented by the

FNN of the lth ACM, blendingGains is the output vector of

that FNN, and ui(k) and uj(k) represent the control outputs of

the local controllers corresponding to the lth ACM. When a

transition is set up, the FNN of the corresponding ACM is

trained off-line on the basis of an input–output data set

generated automatically from a hypothetical transition tra-

jectory from the center of the initial mode to the center of the

target mode. The state is taken from this trajectory and the

desired blending gains (desired outputs of the FNN) are

computed based on the Mode Membership Functions gen-

erated by the mode transition manager. That is, given that the

state of the vehicle is x(k) at some point over this hypothe-

tical trajectory, and mi and mj are the Mode Membership

Functions for the modes involved in the transition from

mode i to mode j, then the desired output for the FNN at that

point is

miðxðkÞÞ
miðxðkÞÞ þ m jðxðkÞÞ

m jðxðkÞÞ
miðxðkÞÞ þ m jðxðkÞÞ

" #T

At run time, the FNN of the ACM is adapted on-line by

the control adaptation mechanism, as is described in the

sequel.

Once the local modes are defined and the local controllers

are designed for each local mode, the transitions are

established via the ACM’s in the mode transition control

component and the corresponding active plant models,

which are incorporated into the adaptation mechanism.

6.4. Adaptation mechanism component

The adaptation mechanism component calls the

adaptation routines of the mode transition control and also

includes the active plant models (one for each transition),

which to serve as partial models of the plant in the

transitions.

6.4.1. Active plant models

For each transition there is an ACM in the MTC

component and the associated active plant model (APM) in

the adaptation mechanism component. The purpose of the

APM’s is to serve as partial models of the plant in the

transitions and provide the sensitivity matrices required to

adapt the ACM’s. Every APM includes a FNN that is trained

to represent the dynamics of the vehicle in the transition

region corresponding to that APM. Therefore, if the model

of the vehicle is given by

xðk þ 1Þ ¼ f ðxðkÞ; uðkÞÞ with xð0Þ ¼ x0 (6)

then, the FNN in the APM l is trained such that

FNNAPMl
ðxðkÞ; uðkÞÞ � xðk þ 1Þ ¼ f ðxðkÞ; uðkÞÞ (7)

given that transition l is active.

A recursive least squares training method minimizes the

approximation error in (7), so this approximation is valid
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when enough input/output data are available to train the

FNN.

Near the actual operating point, defined by the pair

(x(k),u(k)) = (x*,u*), a linearized model of the vehicle is

obtained from the FNN, that is

F ¼ @ f ðxðkÞ; uðkÞÞ
@xðkÞ

����
x;u

� @FNNAPMl
ðxðkÞ; uðkÞÞ

@xðkÞ

����
x;u

(8a)

G ¼ @ f ðxðkÞ; uðkÞÞ
@uðkÞ

����
x;u

� @FNNAPMl
ðxðkÞ; uðkÞÞ

@uðkÞ

����
x;u

(8b)

so

xðk þ 1Þ ¼ f ðxðkÞ; uðkÞÞ
� FðxðkÞ � xÞ þ G ðuðkÞ � uÞ þ x

(9)

Sensitivity matrices computed from (8a), and (8b) are used

in the control adaptation mechanism to adapt the ACM’s as

is described below.

6.4.2. Plant adaptation mechanism

The plant adaptation mechanism is used to train the

APM’s. When the vehicle is in a transition, the input/output

information from its sensors is used by the plant adaptation

mechanism to train this model by calling the recursive least

squares training routine from the FNN. The plant adaptation

mechanism can be disabled at any time to free system

resources, if required. In that case, the last value of the APM

is used by the control adaptation mechanism to compute the

sensitivity matrices.
Fig. 14. Adaptive mode transition con
6.4.3. Control adaptation mechanism

The control adaptation mechanism provides the adapta-

tion function to the ACM’s. When an ACM is active and the

control adaptation mechanism is enabled, an optimization

routine is used to find the optimal control value at each time

step; the optimal blending gains that minimize the error

between the optimal control and the control produced by the

ACM are also computed. These optimal blending gains

constitute the desired outputs for the recursive least squares

training algorithm in the FNN, corresponding to that ACM,

which is in turn called by the control adaptation mechanism.

The optimization routine used to compute the optimal

control value uses a finite horizon optimal control

methodology; the latter is based on the linearized model

of the vehicle, which is obtained in turn from the sensitivity

matrices generated from the corresponding APM, as given

by (8a), (8b) and (9). The objective of this optimal control

problem is to minimize the following performance index

J ¼ 1

2

XkþN

i¼k

eTðiÞQeðiÞ þ DuTðiÞRDuðiÞ (10)

with Q � 0, R > 0

subject toDxðiþ 1Þ ¼ FDxðiÞ þ G DuðiÞ (11)

for i = k, k + 1, . . ., k + N with Dx(k) = Dxk, where

eðiÞ ¼ xdðiÞ � xðiÞ
DxðiÞ ¼ xðiÞ � x
DuðiÞ ¼ uðiÞ � u

Application of the optimization algorithm gives the value

of Du(k) which, in turn, is needed to compute u*(k) from
trol implementation on the OCP.
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u*(k) = u* + Du(k). This is the optimal control value used to

compute the desired blending gains for the active control

model.

The approach constraints the blending gains so the ACM

produces a convex combination of the outputs of the local

controllers and guarantees smooth transitions. That is, given

the outputs of the local controllers corresponding to the

ACM, ui(k) and uj(k), the objective is to minimize the

magnitude of the error

uðkÞ � desiredGainsð1ÞuiðkÞ þ desiredGainsð2Þu jðkÞ
�� ��2

2

subject to

0 � desiredGainsðiÞ � 1 for i ¼ 1; 2

desiredGainsð1Þ þ desiredGainsð2Þ ¼ 1

A simple algorithm achieves this objective:

a ¼ sat
DuðuðkÞ � uiðkÞÞ

DuDu

	 

Fig. 15. AMTC algorithms flight test results: (a) desired and actual 3D trajectory;

(d) actuator commands.
desiredGainsð1Þ ¼ 1� a

desiredGainsð2Þ ¼ a

where Du = uj(k) � ui(k)

satðxÞ ¼
0; x< 0

x; 0 � x � 1

1; x> 1

8<
:

These desired gains become the desired outputs for the

recursive least squares algorithm, which trains the FNN

of the ACM.

6.5. Implementation and flight test results

The architecture has been implemented using the OCP.

Fig. 14 shows a software-in-the-loop simulation environ-

ment used to implement the architecture. Hardware-in-the-

loop simulations and flight tests have been performed to
(b) desired and actual position and heading; (c) position and heading errors;
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validate the control algorithms. Fig. 15 shows the flight test

results of a rectangular flight.
7. Fault tolerant control

UAVs are often subjected to failure modes that may lead

to a catastrophic event resulting in loss of the vehicles. It is

desired, therefore, to develop and implement technologies

that will detect and identify in a timely manner to onboard

failure modes and reconfigure the available control authority

so that the vehicle maintains an acceptable level of

performance for the duration of the emergency (Clements,

2003; Clements, Heck, & Vachtsevanos, 2001). The fault

tolerant control architecture implemented on the GTMax is

designed to accommodate multiple fault modes without

degrading the performance of the nominal system. The

architecture improves reliability by integrating fault detec-

tion and identification and reconfigurable flight control

(RFC).

Implementation of the architecture utilizes a three-tier

hierarchical control scheme implemented in the OCP

(Fig. 10). The architecture is a variation of the scheme

developed by Clements (2003). Each level of the hierarchy

adds autonomy to the vehicle. FDI takes place at the highest

level of the hierarchy and directs actions at each subordinate

tier. After the FDI module issues a fault declaration, the fault

tolerant control module issues reconfiguration commands to

the controllers at the lowest tier of the hierarchy.

Reconfigurable flight controllers reside with the baseline

flight controller at the lowest level of the hierarchy. The low-

level controllers generate the control inputs to achieve the

vehicle’s desired flight path. In the event of a malfunction,

reconfigurable flight controllers enable the vehicle to

recover some degree of the performance from the impaired

system.

The architecture implemented on the GTMax was

designed to combat faults in the flight control actuators.

Malfunctions in the flight control hardware were selected for

this study because they challenge both components of the

fault tolerant control architecture, FDI and RFC. Specifi-

cally, a malfunction in the main rotor collective actuator was

examined, but the architecture is readily expandable to

accommodate additional faults. The design identifies the

occurrence of a fault from a finite set of pre-determined

faults. It then applies the appropriate reconfiguration to

stabilize the vehicle. The fault tolerant architecture assumes

the following actuator model:

d ¼ maxðminðkdcom þ b; smaxÞ; sminÞ

where faults can affect the actuator gain k: 0 � k � 1, bias b,

or saturation levels, smin and smax. Faults, such as floating

actuators, where the parameters vary constantly following

the occurrence of the fault are not considered. To accom-

modate these cases, additional hardware on the vehicle could

be employed to immobilize the actuator creating a stuck
actuator condition. Flight test results demonstrate that the

fault tolerant architecture can accommodate stuck actuator

malfunctions with k = 0.

7.1. Fault detection and identification

The success of the prescribed architecture depends

entirely on the success of the fault detection and

identification algorithm. FDI must occur quickly, that is

within a few seconds, or the degraded system will readily

depart from the flight envelope of the reconfigurable flight

controller. A small number of false positives are acceptable.

False negatives and mis-identifications typically result in

loss of the aircraft. Furthermore, the FDI must be robust in

design so that neither adverse environmental conditions nor

aggressive flight trajectories degrade their performance. The

implemented FDI routine is state-dependent; that is it detects

faults based solely on the vehicle’s flight dynamics. No

additional sensors were installed to aid fault detection.

The FDI routine detects a loss of collective pitch control

in the main rotor system of the GTMax. A fault of this kind,

if not detected and compensated for, can quickly precipitate

a catastrophic failure of the vehicle. However, a false

positive activates the reconfigurable flight controller, which

results in reduced flight capabilities of the vehicle. Hence,

the goal is to design a FDI methodology with a good balance

of sensitivity and reliability.

At the heart of the FDI technique discussed below is a

three-layer feed-forward neural network. This neural net-

work is trained off-line by back propagation using both

simulation and flight data to finalize the weights. The

network is then used for real time fault detection. In order to

make the algorithm more effective, the training set needs to

be extensive with respect to flight profiles and environmental

conditions. Additionally, the input vector must be chosen so

that the state and control vectors included have a significant

correlation with the fault mode under investigation. For the

case in point, the signals of interest were the magnitude of

the position, velocity and acceleration errors in the vertical

axis, the commanded collective pitch and the main rotor

speed.

To further refine the method, the input signals were

passed through an averaging filter to eliminate high

frequency noise and to enhance the signature trends

produced by the collective pitch fault. This together with

adequate training of the neural network ensures satisfactory

sensitivity of the algorithm to collective faults. To improve

the rejection of false positives and increase confidence in the

method, a thresholding condition is imposed on the network

output. The threshold limit is a parameter that can be tuned

to obtain a good balance between sensitivity and reliability.

7.2. Reconfigurable flight controller

The reconfigurable flight controller developed exploits an

unconventional control strategy to expand the controllability
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of the fault-impaired system. The control vector for a typical

helicopter includes four inputs: collective, dcoll, lateral

cyclic, dlat, longitudinal cyclic, dlon, and tail rotor pitch, dtr. In

such a system, a throttle control loop or an engine governor

manipulates the throttle, dt, to maintain the speed of the main

rotor, V, at a constant value, Vcom. Constructing a throttle

outer loop that controls Vcom augments the controllability of

the aircraft. Adequate performance from the baseline

throttle inner loop allows use of this strategy for

reconfigurable flight control.

Helicopter vertical thrust is a strong function of both dcoll

and V. In the nominal state, vertical thrust is controlled by

dcoll with V held constant. The converse of this control

strategy is feasible with a loss in response time because

variation of V requires adding or subtracting rotational

energy from the rotor system. The case where dcoll is held

stationary represents the most severe class of malfunction.

Partially degraded response from dcoll provides an improve-

ment over the fully degraded case.

The baseline throttle inner loop controller achieves

approximate adherence to the single pole linear system:

V̇ ¼ 1

t
ðVcom �VÞ

The control Vcom to achieve a desired rotor angular rate,

Vdes is thus:

Vcom ¼ tV̇des þVdes

A feedback linearization type controller is used to control

the vertical thrust of the degraded system. Assuming the

plant has affine dynamics:

ẇ ¼ f þ gV
Fig. 16. Fault tolerant con
where ẇ is the translational velocity of the vehicle in the

body z-direction. The following control is applied to the

system:

Vdes ¼
1

g0
½ẇcom � f 0 � Kdðw� wcomÞ � Kpðz� zcomÞ


where ẇcom, wcom, and zcom indicate the desired vertical

dynamics of the vehicle. A second order filter is normally

applied to these dynamics prior to inclusion in the control

law above. Changing parameters in this filter provides a

means to smooth flight paths after the occurrence of a fault.

f 0 and g0 are estimates of the actual f and g such that

ẇ0 ¼ f 0 þ g0V

where f 0 is estimated by a linear combination of the state and

control vectors plus the output of an adaptive neural net-

work. The input layer of the network consists of the vehicle

state and control vectors and the linear estimate. Back

propagation updates the single hidden layer network to

minimize the model error, e. g0 is approximated simply as

a constant. Scheduling g0 with horizontal velocity has also

proved to be beneficial in simulation.

e ¼ ẇ� ẇ0

Combining equations for Vcom and Vdes, and letting

e = z � zcom, one obtains the following:

Vcom ¼
1

g0
½tẅcom þ ẇcom � t ḟ

0 � f 0 � tKdë:

�ðtKp þ KdÞė� Kpe
�

The error dynamics of the system reduce to:

e €_¼ � Kd þ
1

t

	 

ë� Kd

t
þ Kp

	 

ė� Kp

t
eþ e

t
þ ė
trol flight test result.
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Assuming convergence of the network, e and ė are

negligible. The characteristic equation takes the following

form:

sþ 1

t

	 

ðs2 þ 2zvn þ v2

nÞ ¼ 0

Kp and Kd are set as follows to dictate the performance of

the second order system:

Kp ¼ v2
n

Kd ¼ 2zwn

This method of adaptive neural network control is simple

in implementation, but it lacks certain stability properties

that are assured by more advanced adaptive neural network

flight controllers (Johnson & Kannan, 2002). The proposed

controller depends on the assumption that the neural

network converges using standard back propagation. In

the event the neural network fails to converge, a PID

controller is activated. Through several flight tests, the

control strategy has performed well and the neural network

has never diverged.

Flight test results validate the effectiveness of the

approach. The flight demonstration was initiated with the

UAV in its baseline configuration. The aircraft was

commanded to execute a 70-ft descent from a stationary

hover. During the descent, the stuck collective fault was

applied binding the collective in a typical descent position

that was determined from flight data on the day of the flight

test. The state-dependent neural network FDI routine

detected the fault and activated system restructuring.

Referencing Fig. 16, the descent is initiated at 28 s; the

fault is applied at 30 s, and the fault is detected prior to 34 s.

Without reconfiguration, the vehicle would not have been

able to arrest its descent.
8. Conclusion

Unmanned aerial vehicles present major challenges to the

designer and the end user. They require new and novel

technologies to be developed, tested and implemented if

such vehicles will perform actual missions reliably and

robustly. Autonomy stands out as the key requirement with

enabling technologies to allow such vehicles to operate

safely in unstructured environments within their flight

envelope, to accommodate subsystem/component failure

modes without major performance degradation or loss of

vehicle and to perform extreme maneuvers without violating

stability limits. An integrated/hierarchical approach to

vehicle instrumentation, computing, modeling and control

seems to provide possible solutions. The UAV community is

accomplishing major milestones towards this goal but key

R&D concerns remain to be addressed. More recently,

researchers have been concerned with multiple and

heterogeneous UAVs flying in formation in order to take

advantage of their complementary capabilities (Vachtseva-
nos, Tang, & Reimann, 2004). The UAV swarm problem

opens now avenues of research where the intelligent control

community can contribute significantly in terms of smart

coordination/cooperation technologies.
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