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Abstract: This paper reviews aspects of Unmanned Aerial Vehicle (UAV) autonomy as 
suggested by the Autonomous Control Logic chart of the U.S. DoD UAV Autonomy 
Roadmap; levels of vehicle autonomy addressed through intelligent control practices and 
a hierarchical/intelligent control architecture is presented for UAVs. Basic modules of 
the control hierarchy and their enabling technologies are reviewed; of special interest, 
from an intelligent control perspective, are the middle and high echelons of the
hierarchy. Here, mission planning, trajectory generation and vehicle navigation routines 
are proposed for the highest level. At the middle level, the control role is portrayed by 
mode transitioning, envelope protection, real-time adaptation and fault detection/control 
reconfiguration algorithms which are intended to safeguard the UAV’s integrity in the 
event of component failures, extreme operating conditions or external disturbances. The 
UAV thus exhibits attributes of robustness and operational reliability assuring a
satisfactory degree of autonomy. The control technologies are demonstrated through 
flight testing results and the paper concludes with brief remarks on recent research 
directions regarding coordinated/cooperative control of multiple UAVs.
© 2003 Elsevier Ltd. All rights reserved.
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1 INTRODUCTION

Recent world events have highlighted the utility of 
unmanned aerial vehicles (UAVs) for both military 
and potential civilian applications. However, the
reliability of these systems has been disappointing in 
practice. According to a recent report, nearly half of 
the current-generation unmanned surveillance aircraft 
built have been lost. This loss-rate is about ten times 
worse than manned combat aircraft. Clearly these
numbers are driven in part by the dangerous missions 
these aircraft are tasked with, but there are other 
factors at work here. In manned aircraft, the pilot 
functions as the central integrator of the onboard 
subsystems and works to mitigate problems when 

they occur. Although “human error” is attributed as 
the most common cause of aviation accidents, human 
pilots are also simultaneously the most important 
safety-enhancing component on a manned aircraft.

To address this and other related UAV control issues, 
the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Air Force Research
Laboratory (AFRL) have launched a major initiative
to develop revolutionary new software-enabled
control (SEC) systems with applications to intelligent 
UAVs.

Beyond the reliability of responding to unexpected 
system faults, the SEC program is also charged with 
making these machines more agile, thus helping 
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them avoid hostile actions without exceeding critical 
flight parameters. This has the potential to improve 
the loss-rate for even the most dangerous missions.

The SEC program includes 16 organizations divided 
into SEC technology developers of control-related
algorithms and SEC developers of the software
infrastructure platform that enables the design and 
implementation of advanced control methods. The
organizations include: Boeing Phantom Works,
University of California at Berkeley, California
Institute of Technology, the Charles Stark Draper 
Laboratory, Cornell University, Georgia Institute of 
Technology, Honeywell Laboratories, Massachusetts 
Institute of Technology, Northrop-Grumman
Corporation, University of Minnesota, Oregon
Research Institute, Rockwell Science Center,
Stanford University, Stanford Research Institute,
Scientific Systems Company, Inc., and Vanderbilt 
University.

Improved performance of UAVs is expected to be
achieved when such vehicles are endowed with
levels of autonomy that will allow them to operate 
safely and robustly under external and internal
disturbances, to be able to accommodate fault
conditions without significant degradation of their 
performance, to adapt to unexpected events and to 
coordinate/cooperate among them to accomplish
mission objectives. Figure 1 depicts the expected 
UAV autonomy capabilities according to the U.S. 
DoD’s UAV autonomy roadmap (DoD, 2002).

Figure 1. Autonomous control level trend

We suggest below hardware and software
technologies aimed to achieve such autonomy
objectives.

2 MISSION INTELLIGENT FLOW

A hierarchical control structure for mission
intelligence flow is illustrated in Figure 2. Situation 
Awareness is used for Mission Planning and Flight 
Mode Selection which constitutes the high level 

control elements. For inhabited aircraft the pilot and 
other crewmembers provide the intelligence for
interpreting the data from a variety of sources to 
execute these functions. Much of this data is used in 
pre-flight or pre-mission planning and is updated on-
board as the mission proceeds. As the mission
segments are executed and abnormal events are
encountered, Flight Mode Switching takes place
which constitutes the mid level control element. On 
an inhabited aircraft the pilot flies the aircraft and 
makes necessary mode switching and control
reconfiguration decisions for implementation through 
the use of the Flight Control System. This constitutes 
the low level control element and is used to execute 
the smooth transition between modes of flight, i.e. 
transition from hover or takeoff to level flight, etc., 
and stay within the flight envelope of the UAVs. 
External Abnormal Conditions cause the pilot to take 
corrective action, such as avoiding an obstacle or 
evading a target or threat. Internal Abnormal
Conditions can also occur, such as a failure or 
malfunction of a component on board the aircraft. 
Once again the pilot provides the intelligence to take 
the corrective action by reconfiguring his/her set of 
controls to safely continue to fly or land the aircraft.

Figure 2. Mission intelligent flow

Without a pilot onboard the aircraft a UAV must 
either be controlled from the ground by a radio 
control ground pilot or the UAV must have its own 
intelligence to fly autonomously. Executing a VTOL 
UAV mission autonomously has been demonstrated 
by both the Georgia Tech and Sikorsky Aircraft 
UAVs in the Army’s Advanced Scout Rotorcraft
Testbed (ASRT) Project (Schrage, et al. 1997).
However, both of the aircraft weren’t able to use the 
entire flight envelope capability of the UAVs, largely 
limited by the control algorithms implemented. In 
addition, the control algorithms were very much 
customized for the particular vehicle’s characteristics 
and were developed in very much of a trial and error 
approaches . Also, the computing architecture
onboard the aircraft did not provide the environment 
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for reusability and reconfigurability, let alone for 
plug and play of different SEC algorithms  (Schrage 
and Vachtsevanos, 1999).

3 MISSION PLANNING

The high level supervisory controller provides the
start and the destination points to the route planner. 
Upon given a start and a destination points, the route
planner generates the “best” route in the form of 
waypoints for the UAV to follow. A database of the 
terrain in the form of a digitized map is available to 
the route planner. 

The waypoints are downloaded next to the fuzzy 
navigator which ensures that the vehicle follows 
indeed the planned route. The route planner module 
is designed using a modified A* search algorithm 
which attempts to minimize a suitable cost function 
consisting of the weighted sum of distance, hazard 
and maneuverability measures. The cost elements are 
expressed as fuzzy membership functions reflecting 
the inherent uncertainty associated with the planned 
trajectory, the obstacles along the path and the
maneuvers the vehicle is required to perform as it 
navigates through the terrain. A* uses heuristic
knowledge about the closeness of the goal state from 
the current state to guide the search. Given a search 
state space, an initial state (start node) and final state 
(goal node), A* will find the optimal (least cost) path 
from the start node to the goal node, if such a path 
exists (Vachtsevanos, et al., 1997a).

The A* routine receives as an input a 2-D digitized 
map, a start point and a destination point and outputs 
a listing of 2-D waypoints which, if connected with 
straight line segments, form a feasible route from the
start point to the destination point. Figure 3 illustrates 
in a flow chart the route planning implementation
steps. A typical route for the ASRT with actual
mapping data is shown in Figure 4.

The efficiency of the A* algorithm may be improved 
if heuristic knowledge of the costs associated with 
the graph nodes is available. A fuzzy inference
engine has been designed to accelerate the
convergence of the algorithm to the goal state.
Simulation results indicate that substantial
improvements can be achieved when the degree of 
confidence in the heuristic knowledge is exploited
(Vachtsevanos, et al., 1997b ).

Figure 3. Flow chart of the route planner

Figure 4. A typical ASRT planned route

Figure 5 The mission planning configuration
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4 FLIGHT TESTING: GTMAX
RESEARCH UAV

The GTMax research UAV system, Figure 6,
developed at the Georgia Institute of Technology to 
support SEC and other ongoing programs, utilizes a 
Yamaha R-Max helicopter, a mo dular/open avionics 
system, Open Control Platform, a set of baseline
onboard software, and a series of simulation tools. 
The baseline systems enable autonomous flight of the 
normally remotely piloted aircraft. The R-Max
configured with these systems is known as the
GTMax, a highly effective for UAV research vehicle 
that has a design based on lessons-learned from UAV 
research at academic institutions such as Georgia 
Tech, University of California at Berkeley,
Massachusetts Institute of Technology, and Carnegie 
Mellon University for more than ten years.

Figure 6. GTMax helicopter in flight, Georgia Tech's 
test bed research UAV.

Developed in Japan, the basic Yamaha R-Max
helicopter has a rotor diameter of 10.2 feet, a 21 hp 
two-cylinder engine, and weighs 125 pounds. The
weight increases to 160 pounds when configured 
with typical GTMax avionics. It is capable of
carrying approximately 50 additional pounds of
research equipment. It also has a generator, starter, 
and can be flown manually by a remote pilot in sight 
of the helicopter or by an onboard autopilot.
• Basic Yamaha R-Max Dimensions:
– Max. Length: 3630 mm. (Rotor blade included)
– Fuselage Length: 2750 mm.
– Width: 720 mm.
– Height: 1080 mm
– Fuel Tank: 6 Liter
– Main Rotor Diameter: 3115mm.
– Tail Rotor Diameter: 545mm.
– Max Gross Weight: 93*g N.
– Max. Payload: 30*g N.
• Powerplant:
– Type: Gasoline 2 cycles
– Cylinder configuration: Horizontal opposition 2
cylinder
– Displacement: 246cc.

– Engine RPM. 6350 RPM (Hovering)
– Max Power Ouput: 15.4 KW (21PS)
– Max Torque: 25.5Nm
– Cooling Type: Liquid Cooling
– Fuel: Auto Gas

The GTMax avionics system hardware consists of a 
set of modules that can be added/removed as
required for a flight test. All modules include electro-
magnetic interference protection and their own
power regulation. The mo dules are mounted in a 
vibration-isolated rack within an enclosure under the 
fuselage. The basic system includes a general-
purpose computer, Differential Global Positioning 
System (D-GPS), an inertial measurement unit, an 
ultra-sonic altimeter, a 3-axis magnetometer, and two 
wireless data links. Other flight configurations used 
to date have also utilized a second general purpose 
computer, cameras, a radar altimeter, and video
capture/compression hardware. The basic ground
equipment includes the data links, a GPS reference 
station, and one or more laptop computers.

The baseline onboard software includes interfaces to 
the sensors, an integrated navigation filter, and a 
nominal trajectory-following autopilot. This allows 
the baseline system to fly a prescribed mission on its 
own, including the takeoff and landing. The role of 
the human operator can be to set the desired flight 
path, start the engine, monitor the flight, and to shut 
down the engine after landing. This enables a large 
number of relevant flight control scenarios to be
tested, from purely manual control to autonomous
operations.

5 UAV ADAPTIVE MODE 
TRANSITION CONTROL

Control of Autonomous Aerial Vehicles presents
unique challenges not only in the design of control 
algorithms, but also in the strategies and
methodologies used to integrate and implement those 
algorithms on the actual vehicles. We propose an 
approach to the adaptive mode transition control of 
UAVs. The main objective of this architecture is to 
improve the degree of autonomy/intelligence of the 
UAV and its performance under uncertain
conditions, for instance when external perturbations 
are present. The architecture is based on concepts 
developed in (Rufus, et al., 2002, 2000a, 200b,
Rufus, 2001) where the adaptive mode transition 
control scheme was first introduced. Here, we
suggest a new approach to the adaptive mode
transition control problem and we are introducing a 
hierarchical architecture to implement it. The
algorithms have been implemented and tested using 
the Open Control Platform (Gutierrez, et al., 2003a, 
2003b)
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The proposed architecture for the control of UAV’s 
consists of a hierarchy of three levels (Figure 7). At 
the highest level, a mission planning component
stores information about the overall mission,
generates a low level representation of that mission, 
and coordinates its execution with the middle level. 
The middle level includes a trajectory planning
component, which receives information from the
high level in terms of the next task to be executed to 
fulfill the mission, and generate the trajectory (set 
points) for the low level controller. At the lowest 
level, an adaptive mode transition controller
coordinates the execution of the local controllers or 
the active control models, which stabilize the vehicle 
and minimize the errors between the set points
generated by the middle level and the actual state of 
the vehicle. The adaptive mode transition control 
consists of the mode transition control component 
and the adaptation mechanism component.

The mode transition control component consists of 
several subcomponents: the local controllers (one for 
each local mode), the active control models (one for 
each transition), and the mode transition manager. 
The mode transition manager decides which
controller to use at a given time (a local controller or 
an active control model) based on the actual state of 
the UAV.

The local controllers are of the discrete time tracking 
variety running at a fixed sample rate. The control 
law for these controllers is given by:

itrimi ukeKku ,)()(  (1)

where k  represents the discrete time, )(ku  is the 
actuator command vector, )(ke  is the error between 
the desired state (set point) generated by the
trajectory planning component ( )(kxd ) and the
actual state of the vehicle obtained from on-board
sensors  ( )(kx ). The parameters for local controller i
are the matrix gain iK , and the trim value of the 
actuator command itrimu , .

The state of the vehicle is given by
Trqpwvuzyxkx ],,,,,,,,,,,[)( ψθφ (2)

where x , y , z represent the positions,φ , θ ,ψ the
attitudes, u , v , w the velocities, and p , q , r the
angular rates.

Figure 7. Overall architecture for the Adaptive Mode Transition Control
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Once the operating state of a mode is decided, an 
approximate model of the vehicle is linearized about 
that state, and then discretized. A linear quadratic 
regulator is computed for the matrix gain iK  and the 
same design procedure is used for each mode. When 
an approximate model of the vehicle is not available, 
the linearized model could be obtained from a Fuzzy 
Neural Net model trained with input-output data
from the actual vehicle.

The Mode Transition Manager (MTM) coordinates 
the transitions automatically based on the actual state 
of the vehicle. In order to accomplish this task, a 
Mode Membership Function is defined for each local 
mode and the MTM determines which local mode or 
transition should be activated relying upon these
costructs.

When a local mode is active, the corresponding local 
controller is used to compute the control output
whereas when a transition is active, the
corresponding ACM is used to compute the control
output.

The active control models are in charge of the
transitions between local modes. The function of an 
active control model (ACM) is to blend the outputs 
of the local controllers corresponding to one
transition in a smooth and stable way, that is , the 
blending of the local controllers should not
deteriorate the overall performance of the closed loop 
system. Every ACM is linked to the local controllers 
corresponding to the transition, has access to their 
outputs, and also includes a Fuzzy Neural Net (FNN) 
that generates the blending gains to compute the
control output. At run time, the FNN of the ACM is 
adapted on-line by the control adaptation mechanism.

The adaptation mechanism component calls the
adaptation routines of the mode transition control and 
also includes the Active Plant Models (APMs, one
for each transition), which serve as partial models of 
the plant in the transitions.

The APMs provide the sensitivity matrices required 
to adapt the ACMs and include a FNN that is trained 
to represent the dynamics of the vehicle in the 
transition. When the vehicle is in a transition, the 
input/output information from its sensors is used by 
the plant adaptation mechanism to train this model 
by calling the recursive least squares training routine 
from the FNN.

The control adaptation mechanism provides the
adaptation function to the ACM’s. When an ACM is 
active and the control adaptation mechanism is 
enabled, an optimization routine is used to find the 
optimal control value at each time step; the optimal 
blending gains that minimize the error between the
optimal control and the control produced by the
ACM are also computed. These optimal blending 
gains constitute the desired outputs for the recursive 
least squares training algorithm in the FNN,
corresponding to that ACM, which is in turn called 
by the control adaptation mechanism.

The architecture has been implemented using the
OCP. Figure 8 shows a software-in-the-loop
simulation environment used to implement the
architecture. Hardware-in-the-loop simulations and
flight tests have been performed to validate the
control algorithms. Typical results are depicted in 
Figure 9.

Figure 8. Adaptive Mode Transition Control Implementation on the OCP
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Figure 9. AMTC algorithms simulation results

6 FAULT TOLERANT CONTROL

UAVs are often subjected to failure modes that may 
lead to a catastrophic event resulting in loss of the 
vehicles. It is desired, therefore, to develop and 
implement technologies that will detect and identify 
in a timely manner on-board failure modes and
reconfigure the available control authority so that the 
vehicle maintains an acceptable level of performance 
for the duration of the emergency (Clements, 2003).
The overall hierarchical fault tolerant structure is
shown in Figure 10.

Since faults are most likely to occur at the
component level, a component-based modeling
system is adopted followed by a mapping from
component faults to system functional behaviors
(Clements, et al., 2001.)

In this model, components are modeled individually 
with the interactions between components
represented by an interconnection structure. A
functional model of the system and the mapping 
from the structural model to this functional model, is 
then defined. Performance and stability criteria are 
specified on the functional model of the system. 
Next, a hybrid hierarchical control strategy is
pursued consisting of a Fault Detection and
Identification (FDI) routine and a Fault Tolerant 
Control (FTC) strategy. The FDI routine uses a
wavelet neural net to detect and identify a fault 
condition, based on training data from simulated 
fault scenarios. The FTC routine consists of a
hierarchical accommodation strategy. In the presence 
of a fault, the high-level redistribution controller re -
routes the available control authority taking
advantage of any inherent redundancy in the system. 
The mid-level set point controller then determines set 
point trajectories which maintain stability of the
restructured system, possibly at some degraded
performance. Finally, the low-level algorithm adjusts 
local controller gains in response to the new set
points generated by the mid-level controller. 

Figure 10. Hybrid hierarchical control structure
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Simulation and flight test results demonstrate the
effectiveness of the approach. A UAV (our GTMax)
performs a bob-up maneuver. Three seconds into the 
maneuver, a stuck collective actuator fault is induced 
and the rpm controller of the helicopter’s main rotor 
is activated. Without control reconfiguration, the
vehicle becomes unstable and crashes. With control 
reconfiguration, the fault is accommodated and the 
UAV completes successfully the maneuver. Figure
11 depicts the results of the flight tests.
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Figure 11. FDI/FTC flight test result

7 THE OPEN CONTROL 
PLATFORM

The Open Control Platform (OCP) is being
developed for use as a software platform enabling 
demonstration and evaluation of advanced UAV
control systems technologies being developed for the 
DARPA Software Enabled Control (SEC) program. 
The OCP enabling software technology is being 
developed by a team from industry and academia, led 
by Boeing Phantom Works, and including the
Georgia Institute of Technology, Honeywell,
Laboratories, and the University of California
Berkeley. The OCP provides a middleware-base
execution framework, Application Programmer
Interfaces (APIs) simulation tools, and integration 
with useful software and control systems design and
development tools. These OCP capabilities and
features are being delivered to the control systems 
technology teams on the SEC program, to provide 
them with a platform to enable rapid development, 
test and migration of advanced control systems
designs to embedded software. Recent tests and
demonstrations of the OCP are described, including 
flight tests by Georgia Tech on the GTMax
unmanned helicopter, and a collaborative
demonstration effort between the Air Force Research 
Laboratory, Boeing, and Northrop Grumman (Wills,
et al., 2000a, 2000b, 2002).

The OCP architecture that is being developed will 
provide the distributed control and reconfigurable

architecture that allows control and intelligence
algorithms at all levels and timescales to interact in a 
decoupled, real-time and distributed fashion. The
mid-level SEC algorithms for Mode Transitioning 
and Fault Tolerant Control illustrated in Figure 12
attempt to raise the degree of autonomy of UAVs by 
developing control algorithms that can handle
abnormal situations. 

Figure 12. Flight control reconfiguration

Figure 13 shows a schematic of the required
distributed control functionality, for the dynamic
reconfiguration of modules through the OCP.

Figure 13.  Distributed control functionality

8 COORDINATED CONTROL OF
MULTIPLE UAVS

Swarms of heterogeneous UAVs may be commanded 
in the near future to execute complex missions in
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uncertain and unfriendly environments. R&D
activities are currently under way worldwide to
address challenging issues arising from the utility of 
multiple vehicles for surveillance, reconnaissance,
rescue and often application domains. The Georgia
Tech research team has been developing a novel 
architecture for the coordinated control of multiple 
Unmanned Aerial Vehicles (UAVs) and a differential 
game theoretical approach to formation control and 
collision avoidance (Vachtsevanos and Tang, 2004).
The hierarchical architecture features an upper level 
with global situation awareness and team mission 
planning, a middle level with local knowledge,
formation control and obstacle avoidance, and a low 
level that interfaces with onboard baseline
controllers, sensors, communication and weapon
systems. Each level consists of several interacting 
agents with dedicated functions. The formation
control problem is viewed as a Pursuit Game of n
pursuers and n evaders. Stability of the formation of 
vehicles is guaranteed if the vehicles can reach their 
destinations within a specified time, assuming that 
the destination points are avoiding the vehicles in an 
optimal fashion. A two-vehicle example is used to 
illustrate the approach. Collision avoidance is
achieved by designing the value function so that it 
ensures that the two vehicles move away from one 
another when they come too close to each one.
Simulation results are suggested to verify the
performance of the proposed algorithm.

9 CONCLUSION

Unmanned Aerial Vehicles present major challenges 
to the designer and the end user.  They require new 
and novel technologies to be developed, tested and 
implemented if such vehicles will perform actual 
missions reliably and robustly.  Autonomy stands out 
as the key requirement with enabling technologies to 
allow such vehicles to operate safely in unstructured 
environments within their flight envelope, to
accommodate subsystem/component failure modes
without major performance degradation or loss of 
vehicle and to perform extreme maneuvers without 
violating stability limits.  An integrated/hierarchical 
approach to vehicle instrumentation, computing,
modeling and control seems to provide possible
solutions.  The UAV community is accomplishing 
major milestones towards this goal but key R&D 
concerns remain to be addressed.  More recently, 
researchers have been concerned with multiple and 
heterogeneous UAVs flying in formation in order to 
take advantage of their complementary capabilities.  
The UAV swarm problem opens now avenues of 
research where the intelligent control community can 
contribute significantly in terms of smart
coordination/cooperation technologies.
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