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ABSTRACT control system which allows autonomous and radio-controllec
This work addresses the design of a robust gain- flights. The vehicle has double tail-boom, 5-meter wingspan an

scheduled controller for the Condor Andino UAV (Unmanned is powered by a BT-64 EI Fuji pusher engine with a 22-in diam-
Aerial Vehicle). A polytopic approximation of the linearization  eter and 10-in pitch two-blade propeller.

family of the nonlinear model is used for the design. Because

the linearization family in the operating region derives in a lin- Several advances have been made in the mechar
ear parameter varying (LPV) description with a nonlinear depen- caj/aeronautical design [1], hardware and software architectur
dence of a set of parameters, a least squares approximation of[z], modeling [3], simulation [4] and navigation [5] of the UAV.
the system matrices is used in order to obtain affine dependence.qr the control system, a three-level architecture is used, base
The polytopic description is obtained from the affine LPV model gy, the ideas shown in [6,7]: at high-level the mission plannel
when the operating range is defined choosing the varying param- gesigns the trajectory in terms of a set of feasible waypoints,
eter inside a convex hull. The controller is synthesized using the mpid-level the guidance system takes the waypoints and calct
Bounded Real Lemma in order to guarantee quadratiqer- lates filtered setpoints and, at low-level the controller follows
formance over the operating region. The simulation results show he setpoints using the vehicle’s state estimation and manipt
that the designed controller can be successfully applied to the lating the control inputs. The design of the low-level control

nonlinear system over the operating range. strategy is an open problem and several solutions can be use
Keywords: Gain Schedulingy.; Polytopic Systems; Ro-  from simple-linear to complex-nonlinear strategies. Some avail
bust Control; UAV. able gain-scheduled robust,, design techniques can be used

[8-10]. These techniques search for linear-parameter-varyin
(LPV) gain-scheduled controllers able to quadratically stabilize
a plant over an operation region, holding somig performance

of the exogenous inputs - controlled variables map [11,12].

INTRODUCTION

The Automation and Design Research Group A+D from
the Universidad Pontificia Bolivariana (Medel] Colombia) has
been developing the fixed-wing unmanned aerial vehicle Condor ) o . )
Andino, Fig. 1. The development process includes the design, In this work, the controller synthesis is achieved using a
construction, integration and test of the mechanical/electrical el- POIytopic approximation of the Jacobian linearization family of

ements and the design, simulation and implementation of the the plant's nonlinear model [13]. The problem can be expresse
as a finite number of linear matrix inequalities (LMIs) and solved

using available software tools [14, 15].

*Addres all correspondence to this author.
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Plants defined by Eqgn. (1) holding (4) are called polytopic.
A more general description of the system in Eqn. (1) is

Xx=A(0)x+B1(0)w+B2(0)u,

FIGURE 1. CONDOR ANDINO UAV z2=C;(0)x+D11(0)w+D12(0)u, (5)
y =C3(0)x+ D21 (0)w+ D22 (0) u;

DESIGN METHOD

The controller design methodology is based on the work of
Apkarian et al. [9]. They propose a robust, controller for
a class of linear-parameter-varying (LPV) plants given by the
state—space model

wherez are controlled outputsy are measured outputs, are
control inputs andav are exogenous inputs.

The design problem for plants represented by Eqn. (5) con
sists in finding an LPV controller

Xk =Ak (0 (t))xk +Bk (a(t))y,

Q) u=Cg (o(t))x +Dk (a(t))y; ©

which ensurest, quadratic performance. This means that for

wherex is the statey is the outputy is the input ana is a time- the closed-loop mapping fromito zshown in Fig. 2

varying parameter. The state—space matrices A, B, C and D are
properly dimensioned and depend affinelyariThis means that
they can be written as X =Ac| (0) X+ Bgl (O) W,

z2=C¢ (0) X+ D¢ (0)W; ™

p p
A(0) = Mao+ S GiMai, B(0) = Mpgo+ ¥ GiMg;j, . .
(©) A0 izzl A © 50 i=zl T @) where x is the complete state, the following statements are tru

p p ; o
C(0) = Mco+ S GiMci, D(0) = Mpo+ S GiMp;; for all possibleo in ©:
2 2

' ' (A1) there exists a single quadratic Lyapunov functivfx) =

xTXx such that A is stable;
whereg = [0’1 Oy - op]T_ The parametar is assumed tovary  (A2) the#, norm of the mapping frorv to zis bounded by some
inside a convex polytope of verticeg, i = 1,...,r; thuso is scalary
defined by the convex combination

and thec, norm is bounded byfz||, <y/||w]|,.

Dei(0) + Cei(0) (sl — Ag (o)t Bd(o)Hoo <y (8

o€ 0O =Co{w,wy,...,wx}
r r (3)
={Zﬁwuzq2w=%.
= = If such LPV controller (6) exists and is measurable, the
controller is self-scheduled with respect ®oand guarantees
If Eqns. (2) and (3) hold, then A, B, C and D can be written global stability for all arbitraryo trajectories ird, [9].
as a convex combination and define the polytope of matrices
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FIGURE 2. CLOSED-LOOP LPV SYSTEM

Through the Bounded Real Lemma conditions, (Al) and
(A2) are true if for allo in ©, the LMI

Al(0)X + XAg(0) XBgi(0) CL(0)
Bl (o)X -yl Dl(o)| <0 ©)
Cu(0) Da(o) -V

holds. The problem in Eqgn. (9) requires solving a LMI with in-
finite number of constraints. This problem can be reduced to a
finite set of LMIs if the closed-loop system is polytopic.

The problem is solvable if the following conditions hold:

(B1) the mapping between the control inpuand the controlled
variableszis zeroi.e. Di2(0) =0;

(BZ) matricesBz(c) =By, Cz(O') =Cy, D12(0') =Dy, D21(O') =
D, are parameter independent;

(B3) the pairs(A(o),By) and (A(o),Cy) are quadratically stabi-
lizable and detectable for al respectively.

Condition (B1) is necessary for well-posedness of the loop
but can often be removed by redefining the plant output and con-
dition (B3) is necessary for the existence of a stabilizing con-
troller (6). Condition (B2) is necessary for the closed-loop sys-
tem to be polytopic so the problem can be solved using a finite
number of LMIs. This condition can be checked if the closed-
loop matrices are written as

Aci(0) =Ao(0)+3 (0)K(0) € (0),
B¢ (0) :Bo(O')—‘rQ% (O')K(O') Dy1(0), (10)
Ce(0) =Co(0)+ D12(0)K(0) € (0),
DC| (O') =D11 (O') + D12 (0') K (0') 921(0') X
where
rote) = | A0 L] oo = [ B,
G0 = [C1@0). ()= P %]
C(O'): C(:)Z Ig:|, D12(0) = [0 Dlz]7
F 0 Ak (0) Bk (0)] .
Dy1(0) = _D21] , K(o) = C::(G) DE (0)} ;
3

andk is the controller order. It can be seen in Eqn. (10) that
in order to have an LPV-polytopic controller and polytopic plant
at the same time, matrices, ¢, D12, D21 must be parameter
independenite. constant matrices.

If B2(0) and/or G(o) are parameter dependent, the open-
loop plant can be augmented by pre-filtering and/or post-filtering
the control inputu and/or the measured variabjdy defining a
new control inpuu'and a new measured output ~

XU :AUXU + BUG7
_U =CuXu, (11)
¥ =Cyxy;
so the augmented open-loop plant is given by
X A(o) By(0)C, O X
>'_<u = 0 A, O Xu
Xy B,C2(0) 0 A [% (12)
B1 (O') 0
+ [ 0 w-+ Bu] a,
ByD21(0) 0
X
z=[C1(0) D12(0)Cy 0] | Xu | +D11(0)W, (13)
Xy
X
y=[00Cy] | xu |- (14)
Xy

When conditions (B1) — (B3) hold, using convexity, Eqn. (9)
is equivalent to the system of inequalities

Al X+ XAgi XBg; CJ,
Bl X -yl D | <0, i=1,....; (15)
Celi Dei —Vl

where Ay, Bgji, Cei and Dy are the images of the vertices.

In Eqgn. (15) there are+ 1 unknown matrices i.eX and K,
i=1,...,r, so the problem is not linear i and K. As shown
in [9], the existence of a controller guaranteeing quadratic
can be established if there exist two symmetric matriRasdS
satisfying the 2r- 1 LMIs

alo]” AiR+RAT RCl| By; ARIO
0l CiR  —yl |Duj olr| <O (16)
B-]_I.—i DIli ‘_VI
i=12,....r;
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Cl; 0
Ns
DIli] [ 0 |:| <07

[NSOT [AiS—f— SAT By

BLS —vi
0|l 1i 17
Ci  Du|-vi (17
i=12,...,r;
RI _
| =o (18)

wheres(r is the base of the null space (@B} D], ]| andasis the

[, m,n are the roll, pitch and yaw moments;

T is the thrust force;

Tm is the propeller’s torque;

W is the propeller’s angular speed;

Jp is the propeller/motor's moment of inertia; and
g is the acceleration due to gravity.

The simulation model uses flat-earth dynamic equations de
fined in the body frame [16] given by

base of the null space 6fC; D21 ]. Furthermore, there exists a

polytopic controller Ko) of orderk if and only if RandS satisfy
the rank constraint

.1 . .
U - (—DcosacosB—YcosasinB+Lsina+T)

(21)
rank( — RS < k. (19) —gsind — (qW—rv),
o1 i .
\% = (=DsinB+YcosB) +gsingcosd — (rU — pW), (22)
Therefore, fromR andSwe need to find complete rank ma- 1
tricesM, N satisfying w = (—DsinacosB —Y sinasinf — L cosa) (23)
+gcospcosd — (pV —qu),
MNT =1 —-RS (20) 1
p=r [(Jca+ Jsa) (IcB—msP — (J;50+ J.ca)n
Then, X is the unique solution of the matrix equatibin = —(%(E-J) +JX22) ar+ ez (K —Jy+Jz) pq (24)
XqM1, where +37Tm + IaJpQ ] ,
.1
S | | R q:x [IsB+mcB+ (I, — k) pr — Je (p* — r?) 25)
I_]1: [NT 0:| 7“2: |:0 MT:| .
_‘]pr(*}n] )
.1
Finally, if X is known (and fixed), the vertex controllers K F = [(Jz5a+ JeCa) (IR~ msP — (Jesa— Jea)n
can be calculated from Eqn. (15) since these inequalities now B B 2 B B (26)
appear as r LMIs in K (% (= Fy) +3) PA—da (b =y + ) ar
+XxzTm +Jx~]pq00m] )
AIRCRAFT MODEL ) ) ) )
Two different models of the aircraft's dynamics are used, The kinematic equations are given by
one for simulation and one for control design. The simulation
model used to test the controllers is a complete model that con- . .
siders the rigid-body dynamics, the nonlinear behavior of aero- (p:p+.qtanesm(p+rtan9coscp, (27)
dynamic forces and moments, and a blade element theory model 0 =qcosp—rsing, (28)
of the thrust forces and moments in the propeller. The model sin cos
. ; ! y_gSine ,  cosg (29)
used in the control design process is a reduced model that only U] _qcose +rcose'

considers the uncoupled longitudinal/lateral dynamics of the air-
craft. Both models use the following nomenclature:

e misthe mass and, J, J;, Jx; are the moments and products
of inertia, and”™ = JJ, — J%,;
e @ 6, Y are the roll, pitch and yaw Euler’s angles respec-

The translational dynamic equations used in controller de
sign are defined in the wind framieg. usingVr, a andp instead
of U,V andW, assuming zero wind velocity. Let us define

tively;
e q, B are the angle of attack and sideslip angle respectively; VU2 V2 W2
e U,V, W are the body framg— y — z velocity components; Vr atarTZ WTJ
e p,q,r are the roll, pitch and yaw angular rates respectively; o= W,U) (30)
e D,Y, L are the drag, crossforce and lift forces respectively; B atanZ(V, \/m)
4 Copyright (© 2010 by ASME
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Then, taking the time-derivative of Egn. (30) and substityiti
into Eqgns. (21) - (23) yields

mVyr = — D+ Tcacp

Mg (—cachsd + spsgod + sachoged),
mcpVra = — L — Tsa + mg(sasd + cacged) (32)
+mVr (B — (pca +rsa) sB)
mVrB =Y — Tcasp
+ mg (casPsd + cPsped — sasPeged) (33)

—mVq (rca — psa) .

with Xong = [Vr a q 8 h]T anduiong = [ 3w 6E}T; and for the
lateral mode
Xiat = flat(Xat, Uat) »

45
Yar=[WBrop], 9

With Xiat = [B P T @ W] " andug = [8a r]".

POLYTOPIC APPROXIMATION
An LPV model can be obtained from a parametrization of
the linearization family of the nonlinear models (44) and (45),

As mentioned, the uncoupled equations are defined in the and the linearization family is obtained for the set of steady-leve
longitudinal and lateral modes: the longitudinal mode assumes flight quasi-equilibrium pointge. points that satisfy the condi-

thatB = p=r = @= 0 and the lateral mode assumes Wat=
a = q= 0. Thus, the longitudinal dynamics equations obtained
from (31), (32), (25), and (28) are given by

mVr =— D+ T cosa +mg (—cososin@+sinacosB)  (34)
mVra = — L — T sina + mg(sina sinB + cosa cosd)

(35)
+ mVTqa
m
a=-0, (36)
Y
6=q, (37)
h =Vr (cosa sin® — sina cosh) , (38)

and the lateral dynamics equations obtained from (33), (24), (26),
(27), and (29) are given by

MVroB =Y — ToctosB

+mg (cooSBsHp + CRspchy — SapsBeecdy)  (39)
— mMVro (FCGQ — pSGo) R
o1
P = [(J€0t0+ JStto) (1B — mos) (40)
- (JZSGO + szCO(O) n—+ Jsz] s
.1
f =F [(Jzs010 + IxzLa0) (1B — mosP) 1)
— (IxzS00 — JkCal) N+ JxzTm) ,
@=p+rtanBycosy, (42)
. COoSp
1] Jco o’ (43)

Equations (34) to (43) can be used to obtain two space-state

models, one for each mode. For the longitudinal mode

Xiong = flong(xlong7 Ulong)a

(44)
Yiong = [VT he—a Q]T7

tion
subject, from Egns. (44) and (45), to

flong(xlong7 uIong) 0,

46
flat(Xat, Uat) = (46)

0,

respectively [13]. A general form for the input and state equilib-
rium values of the longitudinal and lateral modes is

Xjonge = [ Vro 0o 0 0lg ho}T,
Uionge = [6(00 6EO]T7
[0000yo]",

[

Xate

Uiate = | Op0 6RO}T ;

wherep can take any arbitrary value. If Egns. (46) are solved
numerically, it can be found that the equilibrium values can be
parametrized by = [Vro ho}T oro=[dop ho}T. This means
that whervrg andhg are givenpg andhg can be found, and vice
versa. Thus, it is true thafonge = Xionge(0) Uionge = Uionge(T),
Xiate = Xate(0) and Uiae = Uiate(0). Every equilibrium point
parametrized by leads to a Jacobian—linearized model also
parametrized by

Xlongé :Along (0) Xongd + Blong (0) Uiongss

. (47)
Xjas =Alat (0) Xjas + Blat (0) Ujass:

where

Xiongd = Xlong — Xlonge (0), Uiongs = Ulong — Ulonge (o),
Xiats = Xlat — Xiate (0) , Ujats = Ujat — Uiate (O) -

Copyright © 2010 by ASME
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If the Jacobians in Eqn. (47) can be found numerically, Since the functionst anda? are linearly independent, data
using fourth order centered differences, their general from is of ap will be independent oﬁ%. In this last case the parameter
given by polytope® is defined by the region

_alongll(o) Aong12(0) Aong13(0)

alonng(o) alongZZ(G) alongz3(0)

Along (0) = alongBl(O) along32(0) alongBB(U)
0 1

0 Along52(0 0 al0n954(0)

I (o)
_blongll(o) blonng(G)
(o)
(0)

;
0= {o =[010203] :01 € [Oomin, Aomax

oo oo

0
0
0], 02¢€ [a%minaacz)majao?: € [homin,hOmax]}- (49)
0
0

CONTROLLER DESIGN
The design goals and the controller structure are defined b

b o)b o
B _ long21(0) Drongz2 choosing the measured variablgshe controlled variablesand
long (0) = 0 biong32(0) | , h .
0 0 the exogenous variables. The set of controlled and measured
0 0 variables define which mapping norm is to be optimized, becaus

- the control goal is to minimize th&, norm of thew — z map-

Aat11(0) Aat12(0) &ar13(0) Aatra(0) 0 ping. The exogenous variables are the setpoints and the outp
Aat21(0) Aar22(0) Aat23(0) 0 0 disturbances; the controlled variables are the errors, the error il
At (0) = | @a31(0) Qat32(0) aazsz(0) 0 O, tegrals, the part of the state vector not covered in the errors ar
0 0  @aus(o) 0 O the control inputs; the measured variables,the variables used
L 0 0 0 &assa(0) 0 by the controller are given by the errors, are the error integral:
[ biat11(0) bai2(0) and the part of the state not covered by the error.
blat21(0) blaw2(0) Since the longitudinal and lateral controllers are designec
Biat (0) = | biat31(0) biats2(0) | ; from the uncoupled models, each controller is designed sep:
0 0 rately. Then, for the longitudinal mode the variables are
0 0

(48)  w=|Vrqhgldy dh]",
Z= [VTd —Vr hg— h‘fVTd —Vr fhd — h\—a —q —G\Ew BE]T,
. . T . .
and if they are parametrized loy= [0 ho | an illustration of y=[Vra—Vr hg—h|/Vrg—Vr [he—h|—a —q 79]T;
Ajong is shown in Fig. 3 (solid surface). It is obvious that the (50)
dependence oa of the Jacobians (Eqgns. (48)) is in general non-

linear, so the affine condition in Eqn. (2) does not hold. An alter-

L . ) S and for the lateral mode the variables are
native, is to find a static least-square-sense approximation [17]

of the surfaces defined by the elements in Egn. (48), so they can B 417

fit in an affine structure. A possibility to do that is using the two w= [wd‘ ‘“] ’

parameter structure z=[Pg— |/ Yg—Y|—B —p —r —¢|3a 6R]T, (51)
y=[Wa— W[/ Wa—w|-B—p -1 —0]"

A (O') = Mao + agMag + hgMap,

B (0) = Mgo + 0oMga + hoMah; The variables’ selection looks for a trade-off between error,
state and control effort minimization in at, sense. This design

problem is solved by calculating the LMIs proposed previously,

using Matlat®’s LMI Control Toolbox, since it has ready-to-use

L MI solving and #,, robust control synthesis tools [14, 15].

for each matrix in Eq. (48). This approximation is depicted in
Fig. 3 (mesh). Moreover, a better approximation is using a three-
parameter option where one of the parameters is the square of
a

CONTROLLER IMPLEMENTATION
A (0) = Mpp + 01Maq + 02Mag2 + 034y The controller implementation requires considering two
main topics: the convex decomposition problem and the schedu

= Mao + 0oMag + 08Maaz 4+ hoMan, : : . ; )
A0 RO Aa o Aaz T T TTIAR ing variables update. The first one defines the scheduling tecl

B (0) = Mgo + 01Mga + 02Meaz +03Bn nique and the latter defines how the controller’'s gains chang
= Mpo + oMy + a%MBuz + hoMgh. with changes in the plant’s dynamics.
6 Copyright (© 2010 by ASME
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FIGURE 3. LONGITUDINAL MODEL: LPV (SOLID SURFACE), AFFINE APPROXIMATION (MESH)
Convex decomposition problem where
When the synthesis problem is solved, the vertex controllers
Ki are known. These vertex controller matrices define the LPV max min
controller through the convex combination a=21 —O0L 9270
0-Tax_ 0-Enln O-gwax_ O-2m|n
r
K(o) = i;HKi' (52) A similar solution for the three-parameter case can be founc
Then, the convex coordinates are given by
Equation (3) shows that there is a mapping between the con-
vex coordinateg; and the parameteri.e.ifall | (i=1,...,r) i =abcu = (1—a)be,us=a(l—b)c,
are known, a particular € O is given. b= (1—a)(1-b)c,us =ab(l—c), 54
The convex decomposition problem consists in finding an be=(1—a)b(l-c),ur=a(l-b)(1-c), (54)
inverse of the mapping in Egn. (3)e. for a giveno one have Hg=(1—a)(1—b)(1—c);
to find a set ofy; (i = 1,...,r) satisfying Eqn. (3). The two-
parameter case is shown in [9] and the convex coordinates are
given by where
Wi =ablp = (1-a)b,pg=a(l-b), (53) g O1-of"  op—of"  oz—of"
W= (1 — a) (1 _ b) : O-Tax _ crlmn ’ Ggwax _ c)-rznm ) cgwax _ c).rsmm :
7 Copyright (© 2010 by ASME
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Using Eqn. (53) or Eqn. (54), Eqn. (52) can be rewritten as TABLE 1. WAYPOINTS

ID Mod North East Alt. Speed Rad. No.

;
K(o) = _ZM (0)Ki; m (M (M) (kmh) (m) tumns
=
1 1 100 0 1500 70
where the scheduling mechanism is defined through this convex 2 1 500 0 1500 75
combination and updated through 3 1 1000 0 1500 70 - -
4 3 1000 500 1500 70 500 1
Scheduling variables 5 1 1500 0 1500 70 - -
_ It is known _thatcr updates the controller. In previous sec- 6 1 2000 0 1550 70 o
tions o was defined from steady—state values, and in the poly-
. L ) T . 7 3 2000 -500 1550 70 -500 1/2
topic description was defined @s= [ag ho| . But in order
to update the controller, a measurable or known value related to 8 1 1000 -1000 1500 0
these values must be chosen. Two possible choices are: using 9 2 500 -1000 1500 70 250
the actual measured or estimated value related to the variables, 10 1 0 0 1500 70

ie.o=a h]T; or using the setpoint value related to the vari-

ablesj.e. 0 = [ag hd]T. In the first case, the controller’s gains
change as fast as the variables change, so this is not a recom-
mendable choice since the angle of attack suffers several changes
during operation that may lead the non-linear closed-loop system
to instability. In the second case, the controller's gains change as
quickly as the setpoints change; this is a more plausible choice
because in this case the setpoints’s changes are smooth and rate-
filtered.
The main reason to use the above mentioned choice,for
is that the controller is designed from a parametrization of the
family of linearized models. These models are good if the sys-
tem is near a steady-state condition. Moreover, the controller
works well if its gains match the appropriate steady-state con- FIGURE 4. ACHIEVED TRAJECTORY
dition, and choosing the instantaneamsnstead of a setpoint
could mislead the controller to a non-correspondent steady-state
condition. This fact is treated theoretically in [18].
In order to implement the controllew, is updated using the controller. In the low-level, the designed, controller stabilizes
rule the vehicle and follows the set-point changes manipulating th
vehicle’s control inputs.

o= [ag(Vra) hd]T, The trajectory waypoints used in the controller test are re:
sumed in Table 1 and illustrated in Fig. 4. In the mode col-
umn 1 = passthrough, 2 = cut and 3 = loiter; the North and Eas
columns are objective-point coordinates in the passthrough ar
cut modes and center-point coordinates in the loiter mode; and i
the turn radius column a positive radius means clockwise loite
and a negative one means counter-clockwise loiter.

SIMULATION RESULTS The trajectory achieved using thg, algorithm in the low-

The designed controllers are tested through numeric simula- level controller is shown in Fig. 4, the time response of the con:
tion of the complete model of the vehicle, Eqns. (21)-(29), and trolled variables is shown in Fig. 5 and the control inputs behav-
using a three-level hierarchical architecture. The highest level is ioris shownin Fig. 6. These results show that an adequate syste
a mission planner with a trajectory generator which gives a set of behavior can be achieved through the chosen control strateg
feasible waypoints, the mid-level is a guidance system that takes thus the controller can handle gradual smooth set-point changg
the waypoints and calculates filtered setpoints for the low-level given by the trajectory generator.

whereayq is not directly a setpoint andrq is the desired veloc-
ity. The mappingiq(Vrq) is defined by the steady-state relation
between these two variables.
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