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ABSTRACT been developing the fixed-wing unmanned aerial vehicle Condc

An alternative for the steady-level flight control on an Un- Andino, Fig. 1. The development process includes the desigr
manned Aerial Vehicle (UAV) is the use of decentralized multi- construction, integration and test of the mechanical/electrical el
loop PID controllers for each controlled variable. PIDs are linear ements and the design, simulation and implementation of th
structured low order controllers which are not so easy to tune control system which allows autonomous and radio-controllec
in the presence of complex dynamics such as multivariable, non- flights. The vehicle has double tail-boom, 5-meter wingspan an
minimum phase, oscillatory and high-order plants; and the use of is powered by a BT-64EI Fuji pusher engine with a 22-in diame-
conventional design techniques based on linearized models usu-er and 10-in pitch two-blade propeller.

ally does not end in satisfactory results. In this work a design Several advances have been made in the mechar
scheme based on iterative feedback tuning (IFT) for the multi- caj/aeronautical design [1], hardware and software architectur
variable nonI|r_19ar model of the Condor Andino UAV (Andggn [2], modeling [3], simulation [4] and navigation [5] of the UAV.

Condor UAV) is addressed. The method proposes the optimiza- For the control system, a three-level architecture is used, bas
tion of a quadratic performance target function using the closed gy the ideas shown in [6, 7]: at high-level the mission plannel
loop response obtained from simulations. In this case the Charac'designs the trajectory in terms of a set of feasible waypoints,
teristics of the model are not used directly in the controller tuning mid-level the guidance system takes the waypoints and calculats
process, butin simulations and in some other numeric manipula- fijtered setpoints and, at low-level the controller follows the set-
tions. The optimization process is made using a modified version points using the vehicle’s state estimation and manipulating th

of the Levenberg-Marquardt algorithm. The simulation results ¢ontrol inputs. The design of the low-level control strategy is ar
show that a set of controller parameters can be found such thatgpen problem and several solutions can be used, from simple

the target function has a local minimum. linear to complex-nonlinear strategies. Perhaps the simplest e
~ Keywords: Controller Optimization; Iterative Feedback Tun-  fective solution when the system is multivariable is the use of
ing; Multiloop PID; UAV. decentralized PID (multiloop PID) controllers in some configu-

ration, depending on the coupling between controlled variable
and manipulated variables of the system, [8].

The behavior of the UAV is nonlinear, has several controlled
variables and shows opposed-direction and coupled dynami
that lead to inverse response. Hence, the controller must be stru
tured and multivariable, and its design process can be challent

INTRODUCTION
The Automation and Design Research Group A+D from
the Universidad Pontificia Bolivariana (Medel] Colombia) has

*Addres all correspondence to this author.
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FIGURE 2. CLOSED-LOOP INTERCONNECTION

controller equations are parametrized becausg), Xy(t), u(t)
andy(t) are dependent on the values takerpby

Now, the design objective is to findpasuch that a quadratic
performance target function has a local minimum. So, let us suf
pose that the target function is given by

FIGURE 1. CONDOR ANDINO UAV

1
ative Feedback Tuning (IFT) idea addressed by Hjalmarsson [9] 2N
for linear SISO plants is proposed. This design scheme aims to
the minimization of a quadratic target function using a gradient
descent algorithm, based only on information from the closed
loop response. The problem has been formulated for the linear
MIMO case in [10], for the nonlinear SISO case in [11] and im-
proved in [12]. This work addresses a design strategy for the
low-level controller of a UAV, based on IFT for the MIMO non-
linear case.

A

ing. Therefore, an alternative design technique based on the Iter- I(p) =
2N
K

Uy Ru, 3)

M=z

i Qfic +

M=z

1 1

wherey’=y—yj is the error between the desired respopsand
the actual response Q andR are constant weight matricesjs
a scalar and is the sample number. In Eqgn. (3)js calculated
based on a discretization gft). It is also possible to formu-
late J as a continuous time integral but it is easier to calculate i
in discrete time if the information of comes from simulations.
However, this does not make a fundamental change in the prol
lem formulation. The dependence dbn p in Eqn. (3) denotes
that changes id depends only on the particular valuemif the
plant is assumed time-invariant and disturbance-free.

Now, using the definition in Eqn. (3) the design objective
can be formulated as [9, 12]

DESIGN METHOD
Consider the nonlinear time-invariant plant described by the
continuous-time model

X(t) = f(x(t),u(t),

y©) = g, u); @ p" = argmin(p). @)

wherex(t) is the statey(t) is the control input ang(t) is the subject to Eqgns. (1) and (2).

output. The effect of disturbances is neglected and the only ex-  Due to the nonlinear nature of the problem, the solution is
ogenous variable considered is the controller reference signal. obtained using the iterative gradient based local search algorith
Suppose that we use a non-linear two-degree-of-freedom con-

troller, which is defined by Pt = P n,H_lJ/(p,) (5)
i+1 = Pi — Iifn; i)s

whereH is a positive definite matrix andl is the gradient of
with respect top. If H =1 the algorithm steps in the steepest
descent direction, iH = 82J(p)/dp? is the exact Hessian, the
Newton-Rhapson algorithm appears and if an approximation o
wherex; (t) andxy(t) are the controller’s state variablast) is the Hessian is used, the Gauss-Newton or Levenberg-Marquar
the reference signal arglis a vector of tuning parameters. The algorithms appear. As expected, the convergence properties &
closed-loop interconnection is depicted in Fig. 2. In Egn. (2) the affected by the choice dfl andn. The step size is defined loy

t t
Xy(t) = fy(p, xy(1),y (1)), @)
) r(t)) _QY(pvxy(t)7y(t));
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and can be determined using a sequence that meets the cosditio whereh; is the step in the tuning parameters, given by

iin?@o, iimzw. (6)

A possible choice that satisfies Eqn. (6) is making- a/i, with
abeing a positive constant. { 2, 9 € (—«,0.25]
Mir1 =

hi = —niH~3(p).

The Levenberg-Marquardt algorithm updates the damping
coefficient as follows

A key element in the algorithm is determining the gradient W, 9 €(0.25,0.75) . (12)
J'. Hjalmarsson et al. [9] show how to deal with linear single- W/3, 9c€[0.74,)
input single-output plants, Hjalmarsson and Birkeland [10] show
how to deal with linear multivariable plants anddBerg et al. Another option, as suggested in [12, 14], is given by a con:
[11] show how to deal with nonlinear single-input single-output  tinuous version of (12)
plants. In this case an alternative is proposed for the case in

which the plant and/or the controller are multivariable and non- i1 = HVi
linear, when a simulation model is available. 9 < O{Vi+1 — v
From Eqn. (3) the derivative of with respect t is given 13)
by an- ) P ®PEI 3>0{M‘+1=uimax(§,1—(28—1)3)vi .
Vi1 =2 '

L5 (Y g () R (7) ~ “wherevo=2.

N kzl /), Yk ) As seen in Egns. (7) and (8), the gradient and Hessian e:
timate depend on the Jacobiadys/dp anddu/dp. These gra-
dients are obtained by solving a system of matrix differential

considering thay/dp = dy/0p sinceyq is independent of. equations. The equation system is obtained partially differen
Ifthe'Ga'uss'-Newton algorithm is used, an approximation of tiating Eqns. (1) and (2) with respect o The obtained system
the Hessian is given by of equations is illustrated in Fig. 3 and given by
oy ou\" . (ou d <6X> _of <0X> of <GU>
w2 @e@), 2 (G, alon) “anlon) “aulan)
) (8) oy ag<6x> ag <6u>
and in Eqn. (5H; = H(pi). However, as shown in [12], if the op Ox\odp ou \ dp
Levenberg-Marquardt algorithm is used then, in Eqn. (5), d /ox of, /0%
ai (o) oo 5 (5 )
Hi = H(pi) +Wl; © d [dx L Oty (o) 9ty (ay
(o) 05 () + o (5):
wherep is a damping coefficient that regularizes the Hessian es- ou 0gr [ 0% (15)
timate, as proposed by Levenberg [13, 14]. As suggested in [12], ap =0p(9r) — Do(gy) + v <ap>
a starting value for the damping coefficient is dgy (9% 6gy dy
. {axy <6p> oy (ap)]
bo = Tmax(diag(Flo)), (10)

where,(f) = { or of of }

wheret is 107 for a good initial guess and 18 to 1 for a poor op1 9p2  0pn

initial guess. The damping parameter can be updated based on a As expected, the ODE system given by Eqns. (1), (2), (14

gain ratio that evaluates the quality of the previous step. The gain and (15) can be solved simultaneously in order to obdgidp |

ratiod is defined as the ratio between the actual and the expected,, | du/dp when a particulap is chosen. Then, witidy/dp

Jand s given by andau/dp known,J’ andH can be calculated in order to solve
Eqn. (4) through the algorithm in Egn. (5) by using any of the

_ J1—d (11) possibilities to choos#l (steepest descent, Newton-Rhapson,
shT (whi —3) Gauss-Newton or Levenberg-Marquardt) [12].
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FIGURE 3. MATRIX ODE SYSTEM

AIRCRAFT MODEL
Two different models of the aircraft's dynamics are used,

one for simulation and one for control design. The simulation 1 . . .
= (—Dsinacos — Y sinasinf — Lcosa)

model used to test the controllers is a complete model that con- (18)
siders the rigid-body dynamics, the nonlinear behavior of aero- +gcospcosd — (pV —qu),
dynamic forces and moments, and a blade element theory model
of the thrust forces and moments in the propeller. The model sz [(Jca+ Izsa) IcB—msP — (Isa+ ca)n
used in the control design process is a reduced model that only 2 (19)
considers the uncoupled longitudinal/lateral dynamics of the air- = (2 (=) +35) ar + Ja(k— Jy+ ) pa
craft. +Jsz + szJpqwm] )
Both models use the following nomenclature: o1 2 9
g == [IsB+mcB+ (I,— k) pr— Iz (p° —r°)
e misthe mass and, Jy, J;, Jx; are the moments and products Jy (20)
of inertia, and™ = JJ, — J2,; —Jpl W,
e @ 06, Y are the roll, pitch and yaw Euler's angles respec- 1
tively; f=F [(Is0+ Jyca) (IcB—msP — (Isa— Jea)n
e 0, (3 are the angle of attack and sideslip angle respectively; 2 (21)
e U,V,W are the body framg— y— z velocity components; ~ (5= H) +3e) PA—Jeld— Iy +J)ar
e p,q,r are the roll, pitch and yaw angular rates respectively; +dxatm + JxJpGim];
e D,Y, L are the drag, crossforce and lift forces respectively;
e |, m,nare the roll, pitch and yaw moments; The kinematic equations are given by
e T is the thrust force;
e T is the propeller’s torque; - ;
e W is the propeller's angular speed; cp_p+_qtanesmcp+ r-tanecoscp, (22)
e J, is the propeller/motor's moment of inertia; and 8 =qcosp—rsing, (23)
e gis the acceleration due to gravity. . sing  cos@
W=q cosd " "cosp” (24)

The simulation model uses flat-earth dynamic equations de-

fined in the body frame [15] given by ] ] ) .
The translational dynamic equations used in controller de

sign are defined in the wind framieg. usingVr, a andp instead
1 of U,V andW, assuming zero wind velocity. Let us define
U = (—DcosacosB—YcosasinB+Lsina+T)

(16)
—gsing— (qW —1V), Vi VU2 4+V2 W2
o1 _ _ a| = atan2(W,U) . (25)
\% - (—DsinB+YcosP) +gsingcosd — (rU — pW), (17) B atanZ(V, \/m)
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Then, taking the time-derivative of Egn. (25) and substityiti
into Eqns. (16) - (18) yields

mVT
mcBVra

mvr B

=—D+TcacP (26)
+mg (—cacBsd -+ SBsyed + sachgcd)

=—L — Tsa+mg(sasB + cacgeh) 27)
+mVr (qeB — (pea +rsa) ),

=Y —TcasB
+ mg (casPsd + cPsped — sasPeged) (28)

—mVq (rca — psa) .

with Xong = [Vr a q 8 h]T anduiong = [ 3w 6E}T; and for the
lateral mode

Xiat = flat(Xat, Uat) ,
. (40)
Yaa=[WBrop|,
. T T
With Xiat=[BPr QW] anduia=[3a 3R] .

PROPOSED CONTROLLERS
The proposed controllers are multiloop PIDs, this means

As mentioned, the uncoupled equations are defined in the they are structured linear low-order controllers whose struc
longitudinal and lateral modes: the longitudinal mode assumes tUre is defined based on the knowledge of the system'’s dynamic

thatB=p=

a = q= 0. Thus, the longitudinal dynamics equations obtained

from (26), (2

r = @= 0 and the lateral mode assumes that=

7), (20) and (23) are given by

mVy = — D+ T cosa + mg (— cosa sinB+sina cosd), (29)

mVra = — L — T sina + mg(sina sinB + coso cost)

(30)
+ mVTqa
m
q==, (31)
Y
0 =q, (32)
h =Vt (cosa sin® — sina cosh) , (33)

The longitudinal mode controller has the structure shown ir
Fig. 4 (left), and is defined by the state space equations

o [k (Vrg— V)
longy, __ 2( Td T
|| @
vel vel
V% + Yk (Vg — V) ,
Uiong = [altxc -l (hy — h) — Aty — altig,q | (42)

where altk = [altk:L altk2 altk3 altk4]T and V¢'k = [velk1 velkz}T

are the tuning parametef&9x; = [ velx, a'txc}T is the controller
state;Vr 4, hy are the reference (set-point) valuesis the angle

and the lateral dynamics equations obtained from (28), (19), (21), of attack,8 is the pitch angleq is the pitch rate ang=6—a is
(22) and (24) are given by

MVro =Y — ToctosB

+ mg (copsPsBo + cPsecOy — SapSPeEctp) (34)
— MVt (FCGQ — pSGo) R
.1
P = [(JC0t0+ JStto) (1B — mos) (35)
- (JZSGO + szCO(O) n—+ Jsz] s
.1
f =F [(Jzs010 + IxzLa0) (1B — mosP) (36)
— (IxzS00 — JkCal) N+ JxzTm) ,
@=p+rtanBycosy, (37)
. cosp
1] Jco o’ (38)

the flight-path angle. This controller has two loops: a Pl velocity
feedback loop and an altitude 3-loop P-P-PI which uses thi
fight-path angle, the pitch rate and the altitude feedback.

The lateral mode controller has the structure shown in Fig.
(right), and is defined by the state space equations

1
% = Hﬁﬂ (Wa— W), (43)
[+ ke (Wa — @) — ke —tkap ] .
Uat = {'atxcz-kzkl (Wg — W) — %k —2Kar | (44)

wherelkiat = [ tka ko Tks tha] " andhia = [ %k ko 2ks k]
are the tuning parametef¥x = ['ax, 'a‘xcz]T is the controller
state,Jq is the reference (set-point) valug,is the headingpis

Equations (29) to (38) can be used to obtain two state spacethe bank anglef is the angle of sideslipp is the roll rate ana

models, one

for each mode. For the longitudinal mode

Xiong = flong(xlong7 Ulong)a

(39)
Yiong = [VT he—a Q]T7

is the yaw rate. This controller has four P inner loops which use
the bank angle, the sideslip angle, the roll rate and the yaw rat
feedback and two PI heading feedback outer loops.
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FIGURE 4. PROPOSED CONTROLLERS: LONGITUDINAL MODE (LEFT), LATERAL MODE (RIGHT)

CONTROLLER DESIGN

The controller parameter optimization with the iterative al-
gorithm shown in Eqn. (5), using Eqgn. (7) and Eqgns. (8)/(9),
requires solving systems in Egns. (14) and (15). The equa-
tions with the form of Eqn. (14) are obtained from the model of
Eqgns. (29)-(33)/(39) and from Eqns. (34)-(38)/(40) analytically
or numerically usingv.g. centered differences. In this work,

fourth-order centered differences are used. Equations (15) are

obtained from the controller Eqns. (41)-(42) and (43)-(44), an-
alytically, taking the partial derivative with respectgo These
equations depend on the selected particular controller structure.

Longitudinal mode optimization

The optimization of the longitudinal controller is done in
two steps. First, the altitude loop paramet®isare optimized
while the velocity loop parameteY&k are held constant, through

the response to an exponential set-point change in the desired al-

titudehy. Second, the velocity loop paramet¥t& are optimized
while the altitude loop parametet& are held constant, through
the response to an exponential set-point in the desired altitude.
In both cases the velocity set-poWitq is held constant.

In the altitude case, taking the partial derivative of Eqgns.
(41)-(42) with respect t8'k, Eqns. (15) and (14) become

d (a*’“xc)_{o 0 oo}
dt\9dtk )/ |[0hgy—hoOO
dt \ odtk d (45)
[z 0 0 0] 9¥iong
0 %, 00| gdtk’
duong [ O 00 O e 03,
0dtk  |hg—h0—-y—q 01| gdtk (46)
Velk]_ 0 0 0 aylong_
- 0 altk1 altk3 altk4 W’
6

E (axlong) _aflong (Xlonga l-|Iong> (aXIong)
dt \ odtk ) 0 gdtk
Xiong (47)
0fiong <Xlong7 uIong) OUjong
au|0ng aaltk ’
10000
OYiong [0 O 00 1| (0Xong
3k ~[0-1010 < i ) (48)
00100

In the design process this loop uses the target function

1 N y
Jai = N {YP;ngwathYIongn+)\U|-gngnaltRL|ongn ;
n=1
with weights

05 000
at~_ | 0 0100| 4 (100 .
Q=10 010" R=|0 10| =L

0 001

initial controller parameter®d'k = [-05-0.01-2 —Z]T; fixed

velocity controller parameter§'ky = [0.5 0.1]T and an expo-
nential altitude 5-meter set-point change with a time constant o
5 seconds. Hence, when the Levenberg-Marquardt optimizatio
algorithm is implemented, the target function and its gradient be
haves as shown in Fig. 5 and the evolution of the time respons
of altitude and velocity is shown in Fig. 6.

The final controller parameters are given by

altk — [ ~0.1251-0.0084—2.0032 ~1.9940] .

As it can be seen from the results, the altitude overshoot an
settling time are reduced but the velocity peak is big.

Copyright © 2010 by ASME

Downloaded From: http://proceedings.asmedigital collection.asme.or g/pdfaccess.ashx?ur |=/data/confer ences/imece2010/72225/ on 08/02/2017 Terms of Use: http://www.asm



FIGURE 5. ALTITUDE CONTROL TARGET FUNCTION AND
GRADIENT NORM
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FIGURE 6. TIME RESPONSE OF ALTITUDE AND VELOCITY
IN THE ALTITUDE LOOP OPTIMIZATION

In the velocity case, taking the partial derivative of Eqns.

(41)-(42) with respect t¥'k, Eqns. (15) and (14) become

d (0% _[0Vra—Vr] [*k 0 00]ong 9
dt \ gvelk | — B (49)

0 o 0 %k, 00| gvelk”’
OUong {de—vT 0} {1 o} 0"'xc
velg 0 0 01| gvelk
0 0 (50)
Velkl 0 0 0 aylong_
- 0 altkl altK”; altk4 W'
d (axlong> _aflong (Xlongp Ulong) (axlong>
dt \ odtk ) 0X 0atk
long (51)
n 0 fiong (Xlong7 Ulong) OUjong
au|0ng aaltk ’

10000
Oiong |0 0 001 (6x|ong>

ddtk  [0—-1010]| \ odtk (2)

00100

In the design process this loop uses the target function

1 N N
Jvel = N {ylongqvelelongn + )\U;gnmvelRUOngw} ;
n=1
with weights
100 O
vel~_ |01 0 O] v _[100 L
Q=10001 0| R"=|o0 10/ =%
00 0 01

initial controller parameter¥®ky = [0.5 O.l]T; fixed altitude

controller paramete®ky = [ 0.5 —0.01 —2 —Z]T and an alti-
tude 5-meter set-point change with a time constant of 5 second
Hence, when the Levenberg-Marquardt optimization algorithnr
is implemented, the target function and its gradient behaves ¢
shown in Fig. 7 and the evolution of the time response of altitude
and velocity is shown in Fig. 8.

The final controller parameters are given by

velk = [5.22 282].

As it can be seen from the results, the parameters change has lit
effect on the altitude response and the velocity peak response a
settling time are reduced.

FIGURE 7. VELOCITY CONTROL TARGET FUNCTION AND
GRADIENT NORM
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mer J— with weights
‘ ..\\_/,,L‘;ifi':*::-_ﬁ et
VT(hnsh} " }‘\* / / ------- Initial condition
BEr I“,\ - /‘," — - — Tteration 1 1 0 O 0 0
gaElL i — — Tteration 2
Final iteration 0 01 0 0 0 5 O
B4y I Q=10 0010 0],*R= {0 5} A=1;
00 0O0O01O
= 00 0 001
1504 |
h(m) 1502-/,/”77 o
oo initial controller parameters
M9y 5 0 5 o % ] .
r(s) Yaro = [~ 1.30 —0.50 ~1.50 —2.00] ",

2 o T
FIGURE 8. TIME RESPONSE OF ALTITUDE AND VELOCITY klatO a [050 025145 2]

IN THE VELOCITY LOOP OPTIMIZATION
and a heading 10-degree set-point change with a time constant
5 seconds. Hence, when the Levenberg-Marquardt optimizatio
Lateral mode . D . : i
. S algorithm is implemented, the target function and its gradien
Opposed to the longitudinal mode case, the optimization of - . .
. ; ; behaves as shown in Fig. 9 and the evolution of the time respon:
the lateral mode parameters is done in a single step. Therefore, . o L
2 S of altitude and velocity is shown in Fig. 10.
the controller parametet&,; and?kq; are optimized at the same
time. Then, taking the partial derivative of Eqns. (43)-(44) with

respect td*'k = [ Tkl 2k] ]T, Egns. (15) and (14) become

at at

d (9% [0 0 000ys—y0o
dt\ 6@k /) |[Oyg—w000 0 00

53
[1k2 000 o] 0Yiat 3)

2k, 0 0 0 0| gdltk’

duat [ O 00 OWy—Yo-o9-p
ok ~ |Pg—pO—P-—r O 00 O
1 0] 0",
Bk 54
[k 0 0 ks %ke]| OVt
%k %k3 %ks O O | dalk
d <axlat> ~ Ofiae (Xat, Uat) (ax,at> FIGURE 9. LATERAL CONTROL TARGET FUNCTION AND

GRADIENT NORM

dt \ o'atk 0X o'atk
lat (55)
I 0 flat (Xat, Uat) [ OUjat
au|at alatk
00001
10000
i 0x
a'Tfli: 00100 (alafli . (56) ;},,.qh )
0 O 0 1 O e T ,,-- atial condition
01000 7 U e
— — Iteration 2
Final iteration
The design process is done using the target function s 0 15 2 : ® W 3 0 &
{(s)
1 2 FIGURE 10. TIME RESPONSE OF ALTITUDE AND VELOCITY
J [ [~T lat )\UT IatR , .
TN Z Hatn™ Qfetn - Alhain ™ Rlatn IN THE VELOCITY LOOP OPTIMIZATION

n=1
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The final controller parameters are given by

W= [~1.59—0.11 —155 —2.09] ",
2= [0.37 042 127 201] .

As it can be seen from the results, the heading overshoot
and settling time are reduced and the highly oscillatory initial
response is considerably improved.

SIMULATION RESULTS

The designed controllers are tested through numeric simu-
lation of the vehicle’s complete model (Egns. (16)-(24)) using a
three-level hierarchical architecture. The high-level is a mission
planner with a trajectory generator which gives a set of feasi-
ble waypoints, the mid-level is a guidance system that reads the
waypoints and calculates the filtered setpoints for the low-level
multiloop PID controller that stabilizes the vehicle and follows
the set-point changes manipulating the vehicle’s control inputs.

The trajectory waypoints used in the controller test are sum-
marized in Tab. 1 and illustrated in Fig. 11. In the mode col-
umn 1 = passthrough, 2 = cut and 3 = loiter; the North and East
columns are objective-point coordinates in the passthrough and
cut modes and center-point coordinates in the loiter mode; and in
the turn radius column a positive radius means clockwise loiter
and a negative one means counter-clockwise loiter.

The trajectory achieved using the multiloop PID in the low-
level controller is shown in Fig. 11, the time response of the
controlled variables is shown in Fig. 12 and the control inputs
behavior is shown in Fig. 13. These results show that an ade-
quate system behavior can be achieved through the chosen con
trol strategy, thus the controller can handle gradual smooth set-
point changes.

TABLE 1. WAYPOINTS

ID Mod North East Alt.  Speed Rad. No.
(m) (m) (m)  (km/h) (m) turns

1 1 100 0 1500 70 - -

2 1 500 0 1500 75 - -

3 1 1000 0 1500 70 - -

4 3 1000 500 1500 70 500 1

5 1 1500 0 1500 70 - -

6 1 2000 0 1550 70 - -

7 3 2000 -500 1550 70 -500 1/2
8 1 1000 -1000 1500 70 - -

9 2 500 -1000 1500 70 250 -
10 1 0 0 1500 70 - -

FIGURE 11. ACHIEVED TRAJECTORY
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CONCLUSIONS

In this work the design of a multiloop PID controller for the
low-level control of an UAV using an iterative feedback tuning
scheme was addressed.

Because a PID is a linear structured low order controllet
and the UAV is a multivariable non-minimum phase oscillatory
high-order plant, the design scheme was proposed in a feedbac
iterative-optimization fashion. The design objective was the min-
imization of a quadratic target function through an iterative gra-
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dient based local search algorithm, which uses a continueds v [10] Hjalmarsson, H., and Birkeland, T., 1998. “Iterative feed-

sion of the Levenberg-Marquardt rules. The algorithm required back tuning of linear time-invariant MIMO systems”. In
the calculation of the target function gradient and an estima- Proceedings of the 37th IEEE Conference on Decision ant
tion of the Hessian obtained from the plant's closed-loop re- Control, pp. 3893 — 3898.
sponse, after solving a matrix differential equation system, ob- [11] Sjoberg, J., et al., 2003. “Iterative controller optimiza-
tained from the controller equations and the plant’s nonlinear tion for nonlinear systems'Control Engineering Practice,
simulation model. 11(9), September, pp. 1079 — 1086.

The results showed that the method optimizes the tuning pa- [12] Huusom, J., et al., 2009. “Improving convergence of iter-
rameters in the direction of a local minimum of the target func- ative feedback tuning”.Journal of Process Control,19,
tion and improves the system'’s closed-loop performance. pp. 570 - 578.

[13] Levenberg, K., 1944. “A method for the solution of certain
problems in least squaresQuarterly of Applied Mathe-
matics, 2, pp. 164 — 168.
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