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ABSTRACT
An alternative for the steady-level flight control on an Un-

manned Aerial Vehicle (UAV) is the use of decentralized multi-
loop PID controllers for each controlled variable. PIDs are linear
structured low order controllers which are not so easy to tune
in the presence of complex dynamics such as multivariable, non-
minimum phase, oscillatory and high-order plants; and the use of
conventional design techniques based on linearized models usu-
ally does not end in satisfactory results. In this work a design
scheme based on iterative feedback tuning (IFT) for the multi-
variable nonlinear model of the Condor Andino UAV (Andean
Condor UAV) is addressed. The method proposes the optimiza-
tion of a quadratic performance target function using the closed
loop response obtained from simulations. In this case the charac-
teristics of the model are not used directly in the controller tuning
process, but in simulations and in some other numeric manipula-
tions. The optimization process is made using a modified version
of the Levenberg-Marquardt algorithm. The simulation results
show that a set of controller parameters can be found such that
the target function has a local minimum.

Keywords: Controller Optimization; Iterative Feedback Tun-
ing; Multiloop PID; UAV.

INTRODUCTION
The Automation and Design Research Group A+D from

the Universidad Pontificia Bolivariana (Medellı́n, Colombia) has

∗Address all correspondence to this author.

been developing the fixed-wing unmanned aerial vehicle Condor
Andino, Fig. 1. The development process includes the design,
construction, integration and test of the mechanical/electrical el-
ements and the design, simulation and implementation of the
control system which allows autonomous and radio-controlled
flights. The vehicle has double tail-boom, 5-meter wingspan and
is powered by a BT-64EI Fuji pusher engine with a 22-in diame-
ter and 10-in pitch two-blade propeller.

Several advances have been made in the mechani-
cal/aeronautical design [1], hardware and software architecture
[2], modeling [3], simulation [4] and navigation [5] of the UAV.
For the control system, a three-level architecture is used, based
on the ideas shown in [6, 7]: at high-level the mission planner
designs the trajectory in terms of a set of feasible waypoints, at
mid-level the guidance system takes the waypoints and calculates
filtered setpoints and, at low-level the controller follows the set-
points using the vehicle’s state estimation and manipulating the
control inputs. The design of the low-level control strategy is an
open problem and several solutions can be used, from simple-
linear to complex-nonlinear strategies. Perhaps the simplest ef-
fective solution when the system is multivariable is the use of
decentralized PID (multiloop PID) controllers in some configu-
ration, depending on the coupling between controlled variables
and manipulated variables of the system, [8].

The behavior of the UAV is nonlinear, has several controlled
variables and shows opposed-direction and coupled dynamics
that lead to inverse response. Hence, the controller must be struc-
tured and multivariable, and its design process can be challeng-
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FIGURE 1. CONDOR ANDINO UAV

ing. Therefore, an alternative design technique based on the Iter-
ative Feedback Tuning (IFT) idea addressed by Hjalmarsson [9]
for linear SISO plants is proposed. This design scheme aims to
the minimization of a quadratic target function using a gradient
descent algorithm, based only on information from the closed
loop response. The problem has been formulated for the linear
MIMO case in [10], for the nonlinear SISO case in [11] and im-
proved in [12]. This work addresses a design strategy for the
low-level controller of a UAV, based on IFT for the MIMO non-
linear case.

DESIGN METHOD
Consider the nonlinear time-invariant plant described by the

continuous-time model

ẋ(t) = f (x(t),u(t)),

y(t) = g(x(t),u(t));
(1)

wherex(t) is the state,u(t) is the control input andy(t) is the
output. The effect of disturbances is neglected and the only ex-
ogenous variable considered is the controller reference signal.
Suppose that we use a non-linear two-degree-of-freedom con-
troller, which is defined by

ẋr(t) = fr(ρ,xr(t), r(t)),
ẋy(t) = fy(ρ,xy(t),y(t)),
u(t) = gr(ρ,xr(t), r(t))−gy(ρ,xy(t),y(t));

(2)

wherexr(t) andxy(t) are the controller’s state variables,r(t) is
the reference signal andρ is a vector of tuning parameters. The
closed-loop interconnection is depicted in Fig. 2. In Eqn. (2) the

FIGURE 2. CLOSED-LOOP INTERCONNECTION

controller equations are parametrized becausexr(t), xy(t), u(t)
andy(t) are dependent on the values taken byρ.

Now, the design objective is to find aρ such that a quadratic
performance target function has a local minimum. So, let us sup-
pose that the target function is given by

J(ρ) =
1

2N

N

∑
k=1

ỹT
k Qỹk +

λ
2N

N

∑
k=1

uT
k Ruk, (3)

whereỹ= y−yd is the error between the desired responseyd and
the actual responsey; Q andR are constant weight matrices,λ is
a scalar andk is the sample number. In Eqn. (3),J is calculated
based on a discretization ofy(t). It is also possible to formu-
lateJ as a continuous time integral but it is easier to calculate it
in discrete time if the information ofy comes from simulations.
However, this does not make a fundamental change in the prob-
lem formulation. The dependence ofJ on ρ in Eqn. (3) denotes
that changes inJ depends only on the particular value ofρ if the
plant is assumed time-invariant and disturbance-free.

Now, using the definition in Eqn. (3) the design objective
can be formulated as [9,12]

ρ∗ = argmin
ρ

J(ρ), (4)

subject to Eqns. (1) and (2).
Due to the nonlinear nature of the problem, the solution is

obtained using the iterative gradient based local search algorithm

ρi+1 = ρi −ηiH
−1
i J′(ρi), (5)

whereH is a positive definite matrix andJ′ is the gradient ofJ
with respect toρ. If H = I the algorithm steps in the steepest
descent direction, ifH = ∂2J(ρ)/∂ρ2 is the exact Hessian, the
Newton-Rhapson algorithm appears and if an approximation of
the Hessian is used, the Gauss-Newton or Levenberg-Marquardt
algorithms appear. As expected, the convergence properties are
affected by the choice ofH andη. The step size is defined byη
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and can be determined using a sequence that meets the conditions

∞

∑
i=1

η2
i < ∞,

∞

∑
i=1

ηi = ∞. (6)

A possible choice that satisfies Eqn. (6) is makingηi = a/i, with
a being a positive constant.

A key element in the algorithm is determining the gradient
J′. Hjalmarsson et al. [9] show how to deal with linear single-
input single-output plants, Hjalmarsson and Birkeland [10] show
how to deal with linear multivariable plants and Sjöberg et al.
[11] show how to deal with nonlinear single-input single-output
plants. In this case an alternative is proposed for the case in
which the plant and/or the controller are multivariable and non-
linear, when a simulation model is available.

From Eqn. (3) the derivative ofJ with respect toρ is given
by

J′(ρ) =
1
N

N

∑
k=1

[

(

∂y
∂ρ

)T

k
Qỹk +λ

(

∂u
∂ρ

)T

k
Ruk

]

, (7)

considering that∂ỹ/∂ρ = ∂y/∂ρ sinceyd is independent ofρ.
If the Gauss-Newton algorithm is used, an approximation of

the Hessian is given by

Ĥ(ρ) =
1
N

N

∑
k=1

[

(

∂y
∂ρ

)T

k
Q

(

∂y
∂ρ

)

k
+λ

(

∂u
∂ρ

)T

k
R

(

∂u
∂ρ

)

k

]

,

(8)
and in Eqn. (5)Hi = Ĥ(ρi). However, as shown in [12], if the
Levenberg-Marquardt algorithm is used then, in Eqn. (5),

Hi = Ĥ(ρi)+µi I ; (9)

whereµ is a damping coefficient that regularizes the Hessian es-
timate, as proposed by Levenberg [13,14]. As suggested in [12],
a starting value for the damping coefficient is

µ0 = τmax(diag(Ĥ0)), (10)

whereτ is 10−6 for a good initial guess and 10−3 to 1 for a poor
initial guess. The damping parameter can be updated based on a
gain ratio that evaluates the quality of the previous step. The gain
ratioϑ is defined as the ratio between the actual and the expected
J and is given by

ϑ =
Ji−1 −Ji

1
2hT

i (µihi −Ji)
, (11)

wherehi is the step in the tuning parameters, given by

hi = −ηiH
−1
i J(ρi).

The Levenberg-Marquardt algorithm updates the damping
coefficient as follows

µi+1 =







2µi , ϑ ∈ (−∞,0.25]
µi , ϑ ∈ (0.25,0.75)
µi/3, ϑ ∈ [0.74,∞)

. (12)

Another option, as suggested in [12, 14], is given by a con-
tinuous version of (12)

ϑ < 0

{

µi+1 = µiνi

νi+1 = 2νi
,

ϑ ≥ 0

{

µi+1 = µi max(1
3,1− (2ϑ−1)3)νi

νi+1 = 2
;

(13)

whereν0 = 2.
As seen in Eqns. (7) and (8), the gradient and Hessian es-

timate depend on the Jacobians∂y/∂ρ and ∂u/∂ρ. These gra-
dients are obtained by solving a system of matrix differential
equations. The equation system is obtained partially differen-
tiating Eqns. (1) and (2) with respect toρ. The obtained system
of equations is illustrated in Fig. 3 and given by

d
dt

(

∂x
∂ρ

)

=
∂ f
∂x

(

∂x
∂ρ

)

+
∂ f
∂u

(

∂u
∂ρ

)

,

∂y
∂ρ

=
∂g
∂x

(

∂x
∂ρ

)

+
∂g
∂u

(

∂u
∂ρ

)

;

(14)

d
dt

(

∂xr

∂ρ

)

=∇ρ( fr)+
∂ fr
∂xr

(

∂xr

∂ρ

)

,

d
dt

(

∂xy

∂ρ

)

=∇ρ( fy)+
∂ fy
∂xy

(

∂xy

∂ρ

)

+
∂ fy
∂y

(

∂y
∂ρ

)

,

∂u
∂ρ

=∇ρ(gr)−∇ρ(gy)+
∂gr

∂xr

(

∂xr

∂ρ

)

−
[

∂gy

∂xy

(

∂xy

∂ρ

)

+
∂gy

∂y

(

∂y
∂ρ

)]

;

(15)

where∇ρ( f ) =

[

∂ f
∂ρ1

∂ f
∂ρ2

· · · ∂ f
∂ρn

]

.

As expected, the ODE system given by Eqns. (1), (2), (14)
and (15) can be solved simultaneously in order to obtain∂y/∂ρ
and ∂u/∂ρ when a particularρ is chosen. Then, with∂y/∂ρ
and∂u/∂ρ known,J′ andĤ can be calculated in order to solve
Eqn. (4) through the algorithm in Eqn. (5) by using any of the
possibilities to chooseH (steepest descent, Newton-Rhapson,
Gauss-Newton or Levenberg-Marquardt) [12].
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FIGURE 3. MATRIX ODE SYSTEM

AIRCRAFT MODEL
Two different models of the aircraft’s dynamics are used,

one for simulation and one for control design. The simulation
model used to test the controllers is a complete model that con-
siders the rigid-body dynamics, the nonlinear behavior of aero-
dynamic forces and moments, and a blade element theory model
of the thrust forces and moments in the propeller. The model
used in the control design process is a reduced model that only
considers the uncoupled longitudinal/lateral dynamics of the air-
craft.

Both models use the following nomenclature:

• m is the mass andJx, Jy, Jz, Jxz are the moments and products
of inertia, andΓ = JxJz−J2

xz;
• φ, θ, ψ are the roll, pitch and yaw Euler’s angles respec-

tively;
• α, β are the angle of attack and sideslip angle respectively;
• U , V, W are the body framex−y−zvelocity components;
• p, q, r are the roll, pitch and yaw angular rates respectively;
• D, Y, L are the drag, crossforce and lift forces respectively;
• l , m,n are the roll, pitch and yaw moments;
• T is the thrust force;
• τm is the propeller’s torque;
• ωm is the propeller’s angular speed;
• Jp is the propeller/motor’s moment of inertia; and
• g is the acceleration due to gravity.

The simulation model uses flat-earth dynamic equations de-
fined in the body frame [15] given by

U̇ =
1
m

(−Dcosαcosβ−Ycosαsinβ+Lsinα+T)

−gsinθ− (qW− rV ) ,
(16)

V̇ =
1
m

(−Dsinβ+Ycosβ)+gsinφcosθ− (rU − pW) , (17)

Ẇ =
1
m

(−Dsinαcosβ−Ysinαsinβ−Lcosα)

+gcosφcosθ− (pV−qU) ,
(18)

ṗ =
1
Γ

[(Jzcα+Jxzsα)(lcβ−msβ)− (Jzsα+Jxzcα)n

−
(

Jz(Jz−Jy)+J2
xz

)

qr +Jxz(Jx−Jy +Jz) pq

+Jzτm+JxzJpqωm] ,

(19)

q̇ =
1
Jy

[

lsβ+mcβ+(Jz−Jx) pr−Jxz
(

p2− r2)

−Jprωm] ,

(20)

ṙ =
1
Γ

[(Jzsα+Jxzcα)(lcβ−msβ)− (Jxzsα−Jxcα)n

−
(

Jx (Jx−Jy)+J2
xz

)

pq−Jxz(Jx−Jy +Jz)qr

+Jxzτm+JxJpqωm] ;

(21)

The kinematic equations are given by

φ̇ =p+qtanθsinφ+ r tanθcosφ, (22)

θ̇ =qcosφ− r sinφ, (23)

ψ̇ =q
sinφ
cosθ

+ r
cosφ
cosθ

. (24)

The translational dynamic equations used in controller de-
sign are defined in the wind frame,i.e. usingVT , α andβ instead
of U , V andW, assuming zero wind velocity. Let us define





VT

α
β



 =







√
U2 +V2 +W2

atan2(W,U)

atan2
(

V,
√

U2 +W2
)






. (25)
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Then, taking the time-derivative of Eqn. (25) and substituting
into Eqns. (16) - (18) yields

mV̇T =−D+Tcαcβ
+mg(−cαcβsθ+sβsφcθ+sαcβcφcθ) ,

(26)

mcβVT α̇ =−L−Tsα+mg(sαsθ+cαcφcθ)

+mVT (qcβ− (pcα+ rsα)sβ) ,
(27)

mVT β̇ =Y−Tcαsβ
+mg(cαsβsθ+cβsφcθ−sαsβcφcθ)

−mVT (rcα− psα) .

(28)

As mentioned, the uncoupled equations are defined in the
longitudinal and lateral modes: the longitudinal mode assumes
thatβ ≡ p≡ r ≡ φ ≡ 0 and the lateral mode assumes thatV̇T ≡
α̇ ≡ q≡ 0. Thus, the longitudinal dynamics equations obtained
from (26), (27), (20) and (23) are given by

mV̇T =−D+T cosα+mg(−cosαsinθ+sinαcosθ) , (29)

mVT α̇ =−L−T sinα+mg(sinαsinθ+cosαcosθ)

+mVTq,
(30)

q̇ =
m
Jy

, (31)

θ̇ =q, (32)

ḣ =VT (cosαsinθ−sinαcosθ) , (33)

and the lateral dynamics equations obtained from (28), (19), (21),
(22) and (24) are given by

mVT0β̇ =Y−T0cα0sβ
+mg(cα0sβsθ0 +cβsφcθ0−sα0sβcφcθ0)

−mVT0 (rcα0− psα0) ,

(34)

ṗ =
1
Γ

[(Jzcα0 +Jxzsα0)(lcβ−m0sβ)

−(Jzsα0 +Jxzcα0)n+Jzτm] ,
(35)

ṙ =
1
Γ

[(Jzsα0 +Jxzcα0)(lcβ−m0sβ)

−(Jxzsα0−Jxcα0)n+Jxzτm] ,
(36)

φ̇ =p+ r tanθ0cosφ, (37)

ψ̇ =r
cosφ
cosθ0

. (38)

Equations (29) to (38) can be used to obtain two state space
models, one for each mode. For the longitudinal mode

ẋlong = flong(xlong,ulong),

ylong =
[

VT h θ−α q
]T

,
(39)

with xlong =
[

VT α q θ h
]T

andulong =
[

δω δE
]T

; and for the
lateral mode

ẋlat = flat(xlat,ulat),

ylat =
[

ψ β r φ p
]T

,
(40)

with xlat =
[

β p r φ ψ
]T

andulat =
[

δA δR
]T

.

PROPOSED CONTROLLERS
The proposed controllers are multiloop PIDs, this means

they are structured linear low-order controllers whose struc-
ture is defined based on the knowledge of the system’s dynamics.

The longitudinal mode controller has the structure shown in
Fig. 4 (left), and is defined by the state space equations

longẋc =

[

velk2 (VTd−VT)
altk2 (hd −h)

]

, (41)

ulong =

[

velxc + velk1 (VTd−VT)
altxc + altk1 (hd −h)− altk3γ− altk4q

]

; (42)

where altk =
[

altk1
altk2

altk3
altk4

]T
and velk =

[

velk1
velk2

]T

are the tuning parameters;longxc =
[

velxc
altxc

]T
is the controller

state;VTd, hd are the reference (set-point) values;α is the angle
of attack,θ is the pitch angle,q is the pitch rate andγ = θ−α is
the flight-path angle. This controller has two loops: a PI velocity
feedback loop and an altitude 3-loop P-P-PI which uses the
fight-path angle, the pitch rate and the altitude feedback.

The lateral mode controller has the structure shown in Fig. 4
(right), and is defined by the state space equations

latẋc =

[

1k2
2k2

]

(ψd −ψ) , (43)

ulat =

[

latxc1+ 1k1 (ψd −ψ)− 1k3φ− 1k4p
latxc2+ 2k1 (ψd −ψ)− 2k3β− 2k4r

]

; (44)

where1klat =
[

1k1
1k2

1k3
1k4

]T
and2klat =

[

2k1
2k2

2k3
2k4

]T

are the tuning parameters,latxc =
[

latxc1
latxc2

]T
is the controller

state,ψd is the reference (set-point) value,ψ is the heading,φ is
the bank angle,β is the angle of sideslip,p is the roll rate andr
is the yaw rate. This controller has four P inner loops which use
the bank angle, the sideslip angle, the roll rate and the yaw rate
feedback and two PI heading feedback outer loops.
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FIGURE 4. PROPOSED CONTROLLERS: LONGITUDINAL MODE (LEFT), LATERAL MODE (RIGHT)

CONTROLLER DESIGN

The controller parameter optimization with the iterative al-
gorithm shown in Eqn. (5), using Eqn. (7) and Eqns. (8)/(9),
requires solving systems in Eqns. (14) and (15). The equa-
tions with the form of Eqn. (14) are obtained from the model of
Eqns. (29)-(33)/(39) and from Eqns. (34)-(38)/(40) analytically
or numerically usingv.g. centered differences. In this work,
fourth-order centered differences are used. Equations (15) are
obtained from the controller Eqns. (41)-(42) and (43)-(44), an-
alytically, taking the partial derivative with respect toρ. These
equations depend on the selected particular controller structure.

Longitudinal mode optimization

The optimization of the longitudinal controller is done in
two steps. First, the altitude loop parametersaltk are optimized
while the velocity loop parametersvelk are held constant, through
the response to an exponential set-point change in the desired al-
titudehd. Second, the velocity loop parametersvelk are optimized
while the altitude loop parametersaltk are held constant, through
the response to an exponential set-point in the desired altitude.
In both cases the velocity set-pointVTd is held constant.

In the altitude case, taking the partial derivative of Eqns.
(41)-(42) with respect toaltk, Eqns. (15) and (14) become

d
dt

(

∂altxc

∂altk

)

=

[

0 0 0 0
0 hd −h 0 0

]

−
[

velk2 0 0 0
0 altk2 0 0

]

∂ylong

∂altk
,

(45)

∂ulong

∂altk
=

[

0 0 0 0
hd −h 0 −γ −q

]

+

[

1 0
0 1

]

∂altxc

∂altk

−
[

velk1 0 0 0
0 altk1

altk3
altk4

]

∂ylong

∂altk
;

(46)

d
dt

(

∂xlong

∂altk

)

=
∂ flong

(

xlong,ulong
)

∂xlong

(

∂xlong

∂altk

)

+
∂ flong

(

xlong,ulong
)

∂ulong

(

∂ulong

∂altk

)

,

(47)

∂ylong

∂altk
=









1 0 0 0 0
0 0 0 0 1
0 −1 0 1 0
0 0 1 0 0









(

∂xlong

∂altk

)

. (48)

In the design process this loop uses the target function

Jalt =
1

2N

N

∑
n=1

[

ỹT
longn

altQỹlongn +λuT
longn

altRulongn

]

;

with weights

altQ =









0.5 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 1









,altR=

[

10 0
0 10

]

,λ = 1;

initial controller parametersaltk=
[

−0.5 −0.01−2 −2
]T

; fixed

velocity controller parametersvelk0 =
[

0.5 0.1
]T

and an expo-
nential altitude 5-meter set-point change with a time constant of
5 seconds. Hence, when the Levenberg-Marquardt optimization
algorithm is implemented, the target function and its gradient be-
haves as shown in Fig. 5 and the evolution of the time response
of altitude and velocity is shown in Fig. 6.

The final controller parameters are given by

altk =
[

−0.1251−0.0084−2.0032−1.9940
]

.

As it can be seen from the results, the altitude overshoot and
settling time are reduced but the velocity peak is big.
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FIGURE 5. ALTITUDE CONTROL TARGET FUNCTION AND
GRADIENT NORM

FIGURE 6. TIME RESPONSE OF ALTITUDE AND VELOCITY
IN THE ALTITUDE LOOP OPTIMIZATION

In the velocity case, taking the partial derivative of Eqns.
(41)-(42) with respect tovelk, Eqns. (15) and (14) become

d
dt

(

∂velxc

∂velk

)

=

[

0 VTd−VT

0 0

]

−
[

velk2 0 0 0
0 altk2 0 0

]

∂ylong

∂velk
, (49)

∂ulong

∂velk
=

[

VTd−VT 0
0 0

]

+

[

1 0
0 1

]

∂velxc

∂velk

−
[

velk1 0 0 0
0 altk1

altk3
altk4

]

∂ylong

∂velk
;

(50)

d
dt

(

∂xlong

∂altk

)

=
∂ flong

(

xlong,ulong
)

∂xlong

(

∂xlong

∂altk

)

+
∂ flong

(

xlong,ulong
)

∂ulong

(

∂ulong

∂altk

)

,

(51)

∂ylong

∂altk
=









1 0 0 0 0
0 0 0 0 1
0 −1 0 1 0
0 0 1 0 0









(

∂xlong

∂altk

)

. (52)

In the design process this loop uses the target function

Jvel =
1

2N

N

∑
n=1

[

ỹT
longn

velQỹlongn +λuT
longn

velRulongn

]

;

with weights

velQ =









1 0 0 0
0 1 0 0
0 0 0.1 0
0 0 0 0.1









,velR=

[

10 0
0 10

]

,λ = 1;

initial controller parametersvelk0 =
[

0.5 0.1
]T

; fixed altitude

controller parametersaltk0 =
[

−0.5 −0.01−2 −2
]T

and an alti-
tude 5-meter set-point change with a time constant of 5 seconds.
Hence, when the Levenberg-Marquardt optimization algorithm
is implemented, the target function and its gradient behaves as
shown in Fig. 7 and the evolution of the time response of altitude
and velocity is shown in Fig. 8.

The final controller parameters are given by

velk =
[

5.22 2.82
]

.

As it can be seen from the results, the parameters change has little
effect on the altitude response and the velocity peak response and
settling time are reduced.

FIGURE 7. VELOCITY CONTROL TARGET FUNCTION AND
GRADIENT NORM
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FIGURE 8. TIME RESPONSE OF ALTITUDE AND VELOCITY
IN THE VELOCITY LOOP OPTIMIZATION

Lateral mode
Opposed to the longitudinal mode case, the optimization of

the lateral mode parameters is done in a single step. Therefore,
the controller parameters1klat and2klat are optimized at the same
time. Then, taking the partial derivative of Eqns. (43)-(44) with
respect tolatk =

[

1kT
lat

2kT
lat

]T
, Eqns. (15) and (14) become

d
dt

(

∂latxc

∂latk

)

=

[

0 0 0 0 0ψd −ψ 0 0
0 ψd −ψ 0 0 0 0 0 0

]

+

[

1k2 0 0 0 0
2k2 0 0 0 0

]

∂ylat

∂altk
,

(53)

∂ulat

∂latk
=

[

0 0 0 0 ψd −ψ 0 −φ −p
ψd −ψ 0 −β −r 0 0 0 0

]

+

[

1 0
0 1

]

∂latxc

∂latk

−
[

1k1 0 0 2k3
2k4

2k1
2k3

2k4 0 0

]

∂ylat

∂latk

(54)

d
dt

(

∂xlat

∂latk

)

=
∂ flat (xlat,ulat)

∂xlat

(

∂xlat

∂latk

)

+
∂ flat (xlat,ulat)

∂ulat

(

∂ulat

∂latk

) (55)

∂ylat

∂latk
=













0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0













(

∂xlat

∂latk

)

. (56)

The design process is done using the target function

Jlat =
1

2N

N

∑
n=1

[

ỹT
latn

latQỹlatn+λuT
latn

latRulatn

]

;

with weights

latQ =













1 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0
0 0 0 0 0.1













, latR=

[

5 0
0 5

]

,λ = 1;

initial controller parameters

1klat0 =
[

−1.30−0.50−1.50−2.00
]T

,
2klat0 =

[

0.50 0.25 1.45 2
]T

and a heading 10-degree set-point change with a time constant of
5 seconds. Hence, when the Levenberg-Marquardt optimization
algorithm is implemented, the target function and its gradient
behaves as shown in Fig. 9 and the evolution of the time response
of altitude and velocity is shown in Fig. 10.

FIGURE 9. LATERAL CONTROL TARGET FUNCTION AND
GRADIENT NORM

FIGURE 10. TIME RESPONSE OF ALTITUDE AND VELOCITY
IN THE VELOCITY LOOP OPTIMIZATION
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The final controller parameters are given by

1klat =
[

−1.59−0.11−1.55−2.09
]T

,
2klat =

[

0.37 0.42 1.27 2.01
]T

.

As it can be seen from the results, the heading overshoot
and settling time are reduced and the highly oscillatory initial
response is considerably improved.

SIMULATION RESULTS
The designed controllers are tested through numeric simu-

lation of the vehicle’s complete model (Eqns. (16)-(24)) using a
three-level hierarchical architecture. The high-level is a mission
planner with a trajectory generator which gives a set of feasi-
ble waypoints, the mid-level is a guidance system that reads the
waypoints and calculates the filtered setpoints for the low-level
multiloop PID controller that stabilizes the vehicle and follows
the set-point changes manipulating the vehicle’s control inputs.

The trajectory waypoints used in the controller test are sum-
marized in Tab. 1 and illustrated in Fig. 11. In the mode col-
umn 1 = passthrough, 2 = cut and 3 = loiter; the North and East
columns are objective-point coordinates in the passthrough and
cut modes and center-point coordinates in the loiter mode; and in
the turn radius column a positive radius means clockwise loiter
and a negative one means counter-clockwise loiter.

The trajectory achieved using the multiloop PID in the low-
level controller is shown in Fig. 11, the time response of the
controlled variables is shown in Fig. 12 and the control inputs
behavior is shown in Fig. 13. These results show that an ade-
quate system behavior can be achieved through the chosen con-
trol strategy, thus the controller can handle gradual smooth set-
point changes.

TABLE 1. WAYPOINTS

ID Mod North East Alt. Speed Rad. No.

(m) (m) (m) (km/h) (m) turns

1 1 100 0 1500 70 - -

2 1 500 0 1500 75 - -

3 1 1000 0 1500 70 - -

4 3 1000 500 1500 70 500 1

5 1 1500 0 1500 70 - -

6 1 2000 0 1550 70 - -

7 3 2000 -500 1550 70 -500 1/2

8 1 1000 -1000 1500 70 - -

9 2 500 -1000 1500 70 250 -

10 1 0 0 1500 70 - -

FIGURE 11. ACHIEVED TRAJECTORY

FIGURE 12. CONTROLLED VARIABLES: VELOCITY (FIRST),
ALTITUDE(SECOND) AND HEADING (THIRD)

FIGURE 13. CONTROL INPUTS

CONCLUSIONS
In this work the design of a multiloop PID controller for the

low-level control of an UAV using an iterative feedback tuning
scheme was addressed.

Because a PID is a linear structured low order controller
and the UAV is a multivariable non-minimum phase oscillatory
high-order plant, the design scheme was proposed in a feedback-
iterative-optimization fashion. The design objective was the min-
imization of a quadratic target function through an iterative gra-
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dient based local search algorithm, which uses a continuous ver-
sion of the Levenberg-Marquardt rules. The algorithm required
the calculation of the target function gradient and an estima-
tion of the Hessian obtained from the plant’s closed-loop re-
sponse, after solving a matrix differential equation system, ob-
tained from the controller equations and the plant’s nonlinear
simulation model.

The results showed that the method optimizes the tuning pa-
rameters in the direction of a local minimum of the target func-
tion and improves the system’s closed-loop performance.
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