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Abstract 
 
The air data system is responsible for estimating vital flight parameters for correct and safe 
operation of aircraft. One of the main components in this system is the Pitot tube sensor which 
is responsible for measuring the total pressure and in conjunction with the static pressure port 
estimates parameters like altitude, air speed, vertical speed and Mach number. The Pitot tube is 
prone to failure because of external adverse atmospheric conditions. The current research aims 
to develop a solution to the aircraft loss of control caused by an unreliable airspeed indication 
by introducing the concept of a digital twin that estimates flight parameters based on simulation 
and monitors actual flight parameters. 
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Introduction 
The Air Data System (ADS) plays a vital role in. aircraft operation. The information provided 
by this device is used by the pilot and other aircraft subsystems for maneuvering and navigating 
within safe performance boundaries. There is a history of aircraft accidents caused by the failure 
of one of the ADS sensor, the Pitot tube, for example Air France flight 447 in June 2009, Saratov 
Airlines flight 6W703 and Lion Air flight 610 in 2018. Table 1 shows a list of some selected 
non-military aircraft accidents caused by suspected Pitot tube failure since 1973 [1-15]. 
The Pitot-static system is responsible for airspeed estimation. Under certain atmospheric 
conditions the sensor can become covered and blocked with ice, dirt or even ground protection 
devices, and as a result, the computed airspeed become erratic and unreliable. This affects air 
safety as pilots may not be able to identify the failure and become confused due to unreliable 
and conflicting warnings. In unmanned air vehicles the situation is also critical because the 
autopilot is receiving erratic information from the ADS system causing a total loss of control. 
Aircraft manufacturers have implemented sensor redundancy with a voting scheme to detect 
and isolate faulty air data sensor signals, however under certain atmospheric circumstances all 
sensors fail at the same time, which is called common mode failures. Airbus equipped the A320, 
A330 and A340 with a Backup Speed Scale (BUSS) were a theoretical airspeed is estimated 
from pitch and thrust tables, however the system failed on Air France 447 [16]. Airbus is 
planning to incorporate an extra airspeed estimation sensor based on engine nacelle pressure on 
the A350 [17]. On the other hand, Boeing’s approach to this problem was to equip the 787 
Dreamliner with an airspeed estimation calculated from angle of attack and inertial data which 
they call “Synthetic Air Speed”, however this system failed on Jetstar flight JQ 07 [18]. 
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The goal of this research is to develop an air data system tolerant to the ADS Pitot-static sensor 
failure by means of the analytical estimation of the airspeed, using information from other 
airborne sensors and supported by a high-fidelity aircraft dynamic model called digital twin as 
illustrated in figure 1. 

Table 1. Some non-military aircraft accidents caused by Pitot tube Failure or ADS sensors 
since 1973. 

 

 

 
Fig. 1:  Aircraft digital twin concept. 

 
 
Current Pitot tube failure research 
The airspeed sensor failure problem has been worked out by means of a Sensor failure detection 
identification and accommodation (SFDIA) task. SFDIA has been traditionally divided in two 
steps. The first step involves the detection of the sensor failure and identification (SFDI) of the 
sensor that is generating the unhealthy signal so the corrupted hardware can be isolated. 

Date Model Aircraft Damage Cause 
Passengers 

and  
Crew 

Casualties 
/ Injured 

January 30 1973 DC-9-21 Aircraft total Loss Ice in Pitot tubes 33 0 

December 01 
1974 Boeing 727 - 251 Aircraft total Loss Ice in Pitot tubes 3 3 

July 28 1984 Learjet 25B Aircraft total Loss Pitot tube covers not removed 3 0 

May 21 1986 Tupolev 154B-2 Aircraft total Loss Ice on Pitot tubes 176 0 

March 02 1994 MD-82 Structural 
damage Ice on Pitot tubes 116 0 

February 06 1996 Boeing 757 - 225 Aircraft total loss Dust or insect debris blocking Pitot tubes 
orifices 189 189 

October 02 1996 Boeing 757-23A Aircraft total loss Adhesive tape blocking ADS static port orifice 70 70 
October 10 1997 DC-9-32 Aircraft total loss Ice on Pitot tubes 74 74 

April 7 1999 Boeing 737 4Q8 Aircraft total loss Ice on Pitot tubes 6 6 
October 17 1999 MD-11F Aircraft total loss Ice blocking Pitot tube drain orifices 2 0 

June 3 2006 Dornier 328Jet-
300 Aircraft total loss Obstruction of Pitot tube orifices 8 0 

June 01 2009 Airbus A330 - 202 Aircraft total loss Obstruction of Pitot tube orifices 228 228 
Feb 11 2018 Antonov 148 Aircraft total loss Ice on Pitot Tubes 71 71 
Oct 29 2018 Boeing 737 Aircraft total loss ADS Failure 189 189 
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Accommodation (SFA), the second task, consist in the analytical estimation of the airspeed by 
means of a virtual sensor estimation and the statistical comparison of this value with the sensor 
(or sensors) signal so the healthy one can be selected and used by the flight control system. 
Napolitano et al [19] used three approaches on the SFDI task based in fault detection filters. 
The first approach consist on a fixed failure detection threshold using a Cumulative Sum filter 
– CUSUM. The second approach is based on adaptive failure detection thresholds using a 
floating limiter. The third approach is based on a generalized Likelihood ratio test – GLRT. In 
either approaches, the difference between the sensor measurement and the analytically 
estimated value, so called the residual, is compared with the threshold and the failure will be 
identified when the residual exceeds a particular threshold value thus triggering failure 
detection. Recent research efforts are focused on minimizing the number of false alarms or 
undetected failures generated with the previous approaches by using the exponentially weighted 
moving averaged – EWMA filter which can detect small shifts in the mean and standard 
deviation of process variables [20]. The EWMA chart tracks the EWMA mean of all previous 
samples so that the most recent are weighted more heavily than the older ones, preventing that 
the faults in previous time steps affect the current residual. These fault tolerant techniques can 
be extended to as many sensors as needed in conjunction with a bank of residual monitors to 
isolate the faulty sensor. 
The model-based airspeed estimation approach takes advantage of the well-known aircraft non-
linear model [21, 22] and redundant measurements from the sensors onboard. The commonly 
used model state variables are the true airspeed, angle of attack, angle of sideslip, angular rates, 
Euler attitude angles and the aircraft position. The state control variables relies on the thrust 
force and the elevator, rudder and aileron deflections. The airspeed is implicit in all the twelve 
equations of the aircraft nonlinear model, however in Napolitano’s cited research it is stated 
that the airspeed is strongly correlated with the angle of attack equation and it suffices for the 
estimation of the airspeed. This equation is expressed in a form that is suitable for parameter 
identification with a linear combination of unknown coefficients and known nonlinear functions 
of measured signals. The equation is evaluated at several instants on a time window to set up a 
linear systems of equations that is solved for the unknown equation coefficients by means of 
least squares and taking advantage of previously recorded flight test data. The online estimates 
of the airspeed at a particular time are based on the online solution of the quadratic equation 
were the unknown coefficients are substituted by the LS estimate and only the positive value of 
the airspeed is selected. 
The model-independent virtual sensors are of great interest because the estimation method can 
be applied conveniently to any aircraft without information of the vehicle dynamics which most 
of the time is difficult to obtain. As stated by Napolitano et al [23], the first approach was done 
by the implementation of Kalman Filter estimators (extended - EKF and unscented - UKF). The 
second approach is by the implementation of artificial neural networks (Multi-Layer Perceptron 
- MLP and Extended Minimal Resource Allocating Network - EMRAN) [24]. These approaches 
were evaluated in terms of their performance (by means of mean and standard deviation) in the 
evaluation of the airspeed. The advantage of these methods is that it is not required and exact 
dynamic model of the aircraft were a large data depository containing the linear or non-linear 
relationships of the complete flight envelope of a commercial aircraft will be necessary. The 
previous methods use information from the other airborne sensors to estimate the airspeed, 
particularly the three axis accelerations and angular rates from the IMU, roll and pitch angle 
measurements from the vertical gyro and angle of attack and sideslip from the ADS. 
The MLP ANN used on the estimation of the airspeed was selected by Napolitano [24] due to 
its flexibility for several applications, including function fitting and pattern recognition. The 
MLP was trained to learn the functional relationship between the airspeed and a set of correlated 
measurements provided by the other aircraft sensors. 
The EMRAN [24] ANN architecture allows only the parameters of the most active neurons to 
be updated, while all the others are left unchanged. Essentially, the EMRAN algorithm allocates 
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neurons in order to decrease the estimation error in regions of the state space where the mapping 
accuracy is poor. This strategy results in a significant reduction of the number of parameters to 
be updated online, thus reducing the computational burden, and therefore making this 
architecture particularly suitable for online applications.  
Some other types ANNs had been used in aircraft airspeed estimation. Husain [25] used a fully 
connected cascade ANN for estimation arguing that it requires lower computational effort that 
MLP and EMRAN ANNs. 
The estimation methods described previously require time consuming tuning procedures that 
usually produce unreliable performance when validated with actual flight data. To overcome 
this problem current research effort is being conducted by Napolitano’s team [20] based on a 
semiautomatic data driven approach to select model regressors and identify Nonlinear 
Autoregressive Exogenous – NARX input-output neural network prediction models. This 
approach provides online model adaption mechanisms to cope with time dependent and flight 
dependent levels of uncertainties. The drawback of the NARX estimation model is that being 
an autoregressive model, its prediction is influenced by the fault. Trying to unlink the estimation 
result from the fault the researcher’s tried [26] a feed-forward non-autoregressive MLP NN 
modelled as follows which is able to provide a reliable multi-step ahead estimation 
independently of the occurrence of the fault. 
The fault on the airspeed sensor is usually modeled by different authors like in Napolitano [23] 
as an additive bias. Two suddenly fault scenarios commonly used in fault detection and 
identification practice are usually implemented: a sudden bias (SB) failure and a slow ramp bias 
(SRB) failure. The residual signal used for the purpose of SFD is defined as the difference 
between the measured air speed from the ADS and the estimated airspeed. Theoretically the 
residual signal should approach to zero in the fault free condition scenario, but in the real world, 
due to modelling uncertainties and noise, the residual signal is different from zero. It is found 
in experiments that the raw residual signal has a significant autocorrelated length that is 
introduced mainly by uncertainties in the low frequency range. Since statistical detectors 
perform optimally when residual signals are completely uncorrelated, a whitening filter is 
usually designed to remove the residual signal correlation. 
 
Proposed research 
The proposed work estimates the airspeed using a combination of an Unscented Kalman Filter 
that implements an augmented model that works as a navigation filter able to predict wind 
velocity components to estimate airspeed, angle of attack, and angle of sideslip. The concept is 
to use information of all sensors available and give more weight to healthier sensor signals. The 
scheme should be capable of determine the degree of confidence of each sensor by using a 
statistical measure of the variation of the residual signals like the EWMA filter. Based on 
statistical measurements a mechanism is being developed to adjust the weight of each sensor in 
a proportional way and feedback the sensor autoregulation algorithm. The autoregulation will 
be carried out by automatically adjusting the estimation covariance of each sensor. This filter 
would be an extension of current filters used nowadays for INS-GNSS integration, including 
the wind model and the relative velocity equation, and using as sensors an IMU (gyroscopes 
and accelerometers), a magnetometer, a barometric altimeter (from static port), a GPS 
or RTK (to measure position and velocity respect to earth), a Pitot and the of angle of attack 
and sideslip vanes. The filter is implemented at a higher sample rate of 100Hz having the 
advantage of providing a healthy estimate of the variables even in the case of a Pitot tube 
failure or any of the air angle vanes, as long as the observability condition for the variable being 
measured is attained. This estimate can also be used as a feedback for the flight control system. 
A second subsystem of the proposed scheme is the use of a supervised learning mechanism to 
train a Neural Network or Neuro Fuzzy structure (aircraft digital twin), of an additive model of 
aerodynamic and propulsion forces and moments, based on data provided by the Kalman Filter 
and direct measurements of aircraft controls (from flight test data). Once the digital twin is 
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trained and accuracy achieved, it will be used to augment the UKF with some 
virtual measurements of aerodynamic net force and moment to improve the navigation solution 
of the UKF itself in case of a sensor failure. Figure 2 shows a schematic of the proposed 
approach. The system will first be tested in RMIT´s research flight simulator facility and later 
on the real aircraft so the reaction of the pilot can be assessed. It an improvement in the 
estimation accuracy is expected with the approach described above. A novelty will be provided 
by performing aircraft state estimation during the take-off and landing phases of flight. 

 

Fig. 2:  Proposed airspeed estimation scheme. 
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