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The air data system estimates vital flight parameters for correct and safe aircraft operation. 

One of the main components in this system is the Pitot tube sensor for measuring the total 

pressure and static pressure to estimate altitude, air speed, vertical speed and Mach number. 

The Pitot tube can supply incorrect measurement readings when its orifices are blocked by ice, 

dust or even insects. This paper describes the results of an ongoing research project to develop 

a solution to aircraft loss of control caused by an unreliable airspeed indication by 

incorporating the concept of an aircraft digital twin. 
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𝒂 =accelerometer   

                 measurement 

Ω = angular velocity 

Ω̇ = angular acceleration 

𝑪 = direction cosine matrix 

𝑽 = velocity 

�̇� = acceleration 

𝒓 = position 

𝒒 = attitude quaternion 

�̇� = attitude quaternion rate 

𝒃 = instrument bias 

𝜶 = angle of attack 

𝜷 = angle of sideslip 

𝑭𝒕 = thrust force 

𝑴𝒕 = thrust moment 

𝑭𝒂 = aerodynamic force 

𝑴𝒂 = aerodynamic moment 

𝒎 = aircraft mass 

𝒄𝒈 = center of gravity 

𝑰 = aircraft inertia 

𝑩𝑾 = bandwidth 

 

Subscripts or Superscripts 

𝒃 = body frame 

𝒏 = navigation frame 

𝒎 = measurement 

𝒂𝒄𝒄 = accelerometer 

𝒈𝒚𝒓𝒐 = gyroscope 
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II. Introduction 

The Air Data System (ADS) plays a vital role in aircraft operation. The information provided by this device is used 

by the pilot and other aircraft subsystems for maneuvering and navigating within safe performance boundaries. Aircraft 

state parameters like pressure altitude, vertical speed, calibrated airspeed, Mach number, true airspeed, static air 

temperature, air density ratio, angle of attack and angle of sideslip are calculated by the Air Data Computer (ADC) 

from the information provided by the ADS Sensors. The basic air data sensors are the Pitot tube that provides 

information to the ADC about total pressure, the static port that provides information of the static pressure and the 

temperature probe that provides information of the total air temperature. For some applications, were the aircraft can 

reach angles of attack near the stall region or fly-by-wire flight control system applications, the ADS is provided with 

angle of attack and sideslip vanes. 

There is a history of aircraft accidents caused by the failure of one of the ADS sensors: the Pitot tube. The most 

controversial accidents were AeroPerú flight 603 in October 1996 and Air France flight 447 in June 2009.  In 2018 

two accidents are suspected to be caused by the Pitot tube failure, Saratov Airlines flight 6W703 and Lion Air flight 

610. Table 1 shows a list of some selected non-military aircraft accidents caused by Pitot tube failure since 1973 [1-

15]. 

 

Table 1 Some non-military aircraft accidents caused by Pitot tube Failure or ADS sensors since 1973. 

 

There are also cases were angle of attack vane failure caused aircraft accidents. This was the case for XL Airways 

flight 888T on November 2008 and it is also a presumed the cause for the Ethiopian Airways flight 302 accident on 

March 2019. 

It has been observed that the Pitot-static system fails under certain atmospheric conditions of low temperature and 

high humidity. The sensor orifices or internal ducts are blocked with ice preventing actual pressure readings to be 

sensed by its transducer and as a result, the computed airspeed become erratic and unreliable. There are other possible 

causes of Pitot blockage like dirt, insects or even ground protection devices.  The Pitot tube failure affects air safety as 

pilots may not be able to identify the failure and become confused due to unreliable and conflicting warnings. In 

unmanned air vehicles the situation is also critical because the autopilot is receiving erratic information from the ADS 

system causing a total loss of control. 
To overcome the consequences of ADS sensor failures, aircraft manufacturers have implemented sensor 

redundancy with a voting scheme that detects and isolate faulty air data sensor signals, however under certain 

atmospheric circumstances all sensors fail at the same time and is known as common mode failure. Airbus equipped 

the A320, A330 and A340 with a Backup Speed Scale (BUSS) were a theoretical airspeed is estimated from pitch and 

thrust tables, however the system failed on Air France 447 [16]. The Airbus A350, a state of the art airliner, is using 

an extra air pressure information from the sensors of the engine nacelles that helps alleviating the effects of corrupted 

ADS sensor signals [17]. On the other hand, Boeing’s approach to this problem was to equip the 787 Dreamliner with 

an airspeed estimation using information of angle of attack and inertial data called “Synthetic Air Speed”, however 

this system failed on Jetstar flight JQ 07 [18]. 

Date Model Aircraft Damage Cause 
Passengers 

and  
Crew 

Casualties 
/ Injured 

January 30 1973 DC-9-21 Aircraft total Loss Ice in Pitot tubes 33 0 

December 01 
1974 

Boeing 727 - 251 Aircraft total Loss Ice in Pitot tubes 3 3 

July 28 1984 Learjet 25B Aircraft total Loss Pitot tube covers not removed 3 0 

May 21 1986 Tupolev 154B-2 Aircraft total Loss Ice on Pitot tubes 176 0 

March 02 1994 MD-82 
Structural 
damage 

Ice on Pitot tubes 116 0 

February 06 1996 Boeing 757 - 225 Aircraft total loss 
Dust or insect debris blocking Pitot tubes 

orifices 
189 189 

October 02 1996 Boeing 757-23A Aircraft total loss Adhesive tape blocking ADS static port orifice 70 70 

October 10 1997 DC-9-32 Aircraft total loss Ice on Pitot tubes 74 74 

April 7 1999 Boeing 737 4Q8 Aircraft total loss Ice on Pitot tubes 6 6 

October 17 1999 MD-11F Aircraft total loss Ice blocking Pitot tube drain orifices 2 0 

June 3 2006 
Dornier 328Jet-

300 
Aircraft total loss Obstruction of Pitot tube orifices 8 0 

June 01 2009 Airbus A330 - 202 Aircraft total loss Obstruction of Pitot tube orifices 228 228 

Feb 11 2018 Antonov 148 Aircraft total loss Possible Ice on Pitot Tubes 71 71 

Oct 29 2018 Boeing 737 Aircraft total loss Possible ADS Failure 189 189 
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The goal of this research is to develop an ADS tolerant to the Pitot-static sensor failure by means of a real time 

numerical estimation of the airspeed, using information from other airborne sensors and supported by a high-fidelity 

aircraft dynamic model called digital twin that will act as a virtual sensor. The digital twin concept is illustrated in Fig. 

1. 
 

Fig. 1 Aircraft digital twin concept. 

III. Literature review 

The airspeed sensor failure problem has been worked out by means of a Sensor failure detection identification and 

accommodation (SFDIA) task. SFDIA has been traditionally divided in two steps. The first step involves the detection 

of the sensor failure and identification (SFDI) of the sensor that is generating the unhealthy signal so the corrupted 

hardware can be isolated. Sensor failure accommodation (SFA), the second task, consist in the numerical estimation 

of the airspeed by means of a virtual sensor  and the statistical comparison of this value with the sensor (or sensors) 

signal so the healthy parameter can be selected and used in the flight control system. 

A. Sensor Failure and Identification 

Napolitano et al [19] used three approaches for SFDI purposes based in statistical fault detection filters. The first 

approach analyses the sensor signal residual by means of a fixed failure detection threshold that uses a Cumulative 

Sum filter – CUSUM. The second approach tries to minimize the number of false detections or undetected corrupted 

signals by using adaptive signal residual thresholds and calling this algorithm the “floating limiter”. The third approach 

is based on the analysis of the residual signals by using the statistical generalized likelihood ratio test method – GLRT. 

In either approach, the difference between the sensor measurement and the analytically estimated value, so called the 

residual, is compared with the computed threshold and the failure will be identified when the residual exceeds a 

particular threshold value thus triggering failure detection. Recent research efforts focus on giving robustness to the 

statistical fault detection algorithm to the previous approaches by using the exponentially weighted moving averaged 

– EWMA filter that can detect small shifts in the mean and standard deviation of the residual signals [20]. The EWMA 

filter tracks the EWMA mean of all previous samples so that the most recent are weighted more heavily than the older 

ones, preventing that the faults in previous time steps affect the current residual. These fault tolerant techniques can be 

extended to as many sensors as needed in conjunction with a bank of residual monitors to isolate the faulty sensor. 

B. Model-Based Sensor Failure Accommodation 
The model-based current airspeed estimation approaches take advantage of the well-known aircraft non-linear 

model [21, 22] and redundant measurements from the sensors onboard. The commonly used model state variables are 

the true airspeed, angle of attack, angle of sideslip, angular rates, Euler attitude angles and the aircraft position. The 

state control variables rely on the thrust force and the elevator, rudder and aileron deflections. The airspeed is implicit 

in all the twelve equations of the aircraft nonlinear model, however in Napolitano’s early research it is stated that the 

airspeed is strongly correlated with the angle of attack equation and it suffices for the estimation of the airspeed. The 

researchers expressed this equation in a form that is suitable for parameter identification with a linear combination of 

unknown coefficients and known nonlinear functions of measured signals. The equation is evaluated at several instants 

on a time window to set up a linear system of equations that is solved for the unknown equation coefficients by means 

of least squares and taking advantage of previously recorded flight test data. The online estimates of the airspeed at a 

particular time are based on the online solution of the quadratic equation were the unknown coefficients are substituted 

by the LS estimate and only the positive value of the airspeed is selected. 
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C. Model-Independent Sensor Failure Accommodation 
The model-independent virtual sensors are of great interest because the estimation method can be applied 

conveniently to any aircraft without information of the vehicle dynamics which most of the time is difficult to obtain. 

Researchers had tried several types of state estimators to predict the aircraft airspeed. The nonlinear behavior of the 

aircraft dynamics has caused the researchers to use Kalman filter based estimation methods in the form of Extended 

and Unscented Kalman filter. These estimation methods use information from the other airborne sensors to estimate 

the airspeed, particularly the three axis accelerations and angular rates from the IMU, roll and pitch angle measurements 

from the vertical gyro and angle of attack and sideslip from the ADS as stated by Napolitano et al [23]. 

A second type of model independent SFA methods tried by researchers in the aircraft airspeed estimation are based 

in flight test data correlations in the form of Neural Networks - NN. The NN is trained to learn the functional 

relationship between the airspeed and a set of correlated measurements provided by the other aircraft sensors. Different 

type of NN has been tested in simulation. Napolitano et al [24] and Turkmen et al [25], developed airspeed estimators 

using Multi-Layer Perceptron – MLP NN to take advantage of its flexibility for several applications, including function 

fitting and pattern recognition. The MLP is usually trained to learn the functional relationship between the airspeed 

and a set of correlated measurements provided by the other aircraft sensors. To reduce the real-time computational 

requirements of the MLP NN, Napolitano et al [24] used the Extended Minimal Resource Allocating Networks – 

EMRAN NNs that allows only the parameters of the most active neurons to be updated, while all the others are left 

unchanged. Some other types ANNs had been used in aircraft airspeed estimation. Husain [26] used a fully connected 

cascade ANN for estimation arguing that it requires lower computational effort that MLP and EMRAN ANNs. 

The NN estimation methods described above require tailored time-consuming tuning procedures that usually 

produce unreliable performance when validated with actual flight data. To overcome this problem current research 

effort is being conducted by Balzano et al [27] based on a semiautomatic data driven approach to select model 

regressors and identify Nonlinear Autoregressive Exogenous – NARX input-output neural network prediction models. 

This approach provides online model adaption mechanisms to cope with time dependent and flight dependent levels 

of uncertainties. The drawback of the NARX estimation model is that being an autoregressive model, its prediction is 

influenced by the fault. Trying to unlink the estimation result from the fault the researcher’s tried a feed-forward non-

autoregressive MLP NN modelled which can provide a reliable multi-step ahead estimation independently of the 

occurrence of the fault. 

D. Modelling Pitot tube faults 
The fault on the airspeed sensor is usually modeled by different authors like in Napolitano [23] as an additive bias. 

Two suddenly fault scenarios commonly used in fault detection and identification practice are usually implemented: a 

sudden bias (SB) failure and a slow ramp bias (SRB) failure as shown in Fig. 2 and Fig. 3 respectively as shown in 

Ref. [28]. The residual signal used for SFD is defined as the difference between the measured airspeed from the ADS 

and the estimated airspeed as shown in Fig. 4 and published in Ref. [28].  

 

 

    Fig. 2  SB failure.                              Fig. 3  SRB failure.                           Fig. 4 Residual signal. 

 

Theoretically the residual signal should approach to zero in the fault free condition scenario, but in the real world, 

due to modelling uncertainties and noise, the residual signal is different from zero. It is found in experiments that the 

raw residual signal has a significant autocorrelated length that is introduced mainly by uncertainties in the low 

frequency range. Since statistical detectors perform optimally when residual signals are completely uncorrelated, a 

whitening filter is usually designed to remove the residual signal correlation. 
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IV. Proposed Methodology 

The objective of the project is to develop a new approach to perform SFDIA in case of ADS sensor failure. The 

SFDIA algorithm estimates the aircraft airspeed and other aircraft parameters using information from gyroscopes and 

accelerometers. A Global Positioning System - GPS, a magnetometer and a barometric altimeter are used as aiding 

sensors for estimation purposes. The sensor data fusion and estimation are done by a Kalman Filter based algorithm 

with the help of an accurate aircraft dynamic model acting as a virtual sensor referred to as the “Aircraft Digital Twin”. 

FDI will be carried out automatically by statistical evaluation of the sensor residual signal and accommodation will be 

done automatically by modulating the faulty sensors covariance, giving less weight during the estimation process. The 

proposed system concept is shown in Fig. 5.  

 
Fig. 5 Proposed airspeed estimation scheme. 

 
A. Simulation Tools 

The development of the estimator requires an aircraft flight simulation that provides information of the aircraft state 

to the sensor models and two approaches are being used. The first simulation approach is used for development 

purposes and consist in a Simulink® model of a Ryan Navion aircraft constructed from geometric, aerodynamic and 

propulsion data published by Seckel [29] and featuring an automatic flight control to generate cruise, turn and climb 

maneuvers during a 200 second flight time. The second simulation approach consist in an XPlane-11 based flight 

simulation that communicates in real time via UDP port with the estimation algorithm in Simulink and it will allow to 

use a human pilot to test the estimation algorithm at RMIT’s FlyThisSIM Touch Trainer© flight simulator.  

B. Sensor Simulink Models 
The aircraft flight simulation provides true state data to the sensor models: latitude, longitude, altitude, velocity, 

angular velocity, linear accelerations, dynamic pressure, angle of attack, angle of sideslip, static pressure and static 

temperature. Sensor models will add noise, bias and dynamics to the true aircraft state variable signals so its behavior 

mimics the actual sensors. The following instruments were used:  

 

• Xsens MTi G 700 Series sensor suit which contains an IMU (Gyroscopes and Accelerometers), GPS and a 

Magnetometer.  

• Aeroprobe Micro Air Data System V2.0 wich contains the Pitot-static probe, and provides measurements of 

angle of attack and angle of Sideslip. This instrument come with an air data computer.  

D
ow

nl
oa

de
d 

by
 I

M
PE

R
IA

L
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 o
n 

D
ec

em
be

r 
27

, 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
9-

28
87

 



6 

 

• Honeywell Linear Position Transducers are used to read the position of Flaps, Ailerons, Elevator, Rudder and 

Throttle. 

 

Fig. 6 Instrumentation for real-time inflight state estimation. 

 

The sensor signals are processed in Fit PC - IPC2 computer with an Intel core i7 processor, solid state disk of 

512GB, 16 GB RAM. Fig. 6 shows the developed instrumentation suite. The instrument signals were registered during 

a period of 20 minutes to compute its statistics as shown in table 2. 

 

Table 2 Sensor Data. 

 

Instrument Sensor Bias 
Bias Standard 

Deviation 

Noise Standard 

Deviation 

Bandwidth 

[rad/s] 

Sample 

Time 

[s] 

ADS 

Pitot 0 - 0.1 2*pi*100 

0.02 

Alpha Vane 0 - 
0.0001 2*pi*10 

Beta Vane 0 - 

Barometric 

Altimeter 
0 - 0.1 2*pi*10 

Thermocouple 0 - 0.1 2*pi*0.1 

IMU 

Accelerometer 0 

X: 

0.0000166278915096521 

X: 

0.0166278915096521 

2*pi*40 0.01 

Y: 

0.0000210908739381218 

Y: 

0.0210908739381218 

Z: 

0.000098348406709339 

Z: 

0.0098348406709339 

Gyroscope 0 

X: 

0.00000144095816668194 

X: 

0.00144095816668194 

Y: 

0.0000015453608741964 

Y: 

0.0015453608741964 

Z: 

0.00000158938163186551 

Z: 

0.00158938163186551 

Aiding 

Sensors 

Magnetometer 

0 
Latitude: 

 0 

Latitude: 

0.0041428199321538 

 

2*Pi*40 0.02 
0 

Longitude: 

 0 

Longitude: 

0.0069532526571309 

0 
Altitude: 

 0 

Altitude: 

0.00947124844151009 

GPS 

Position 

0 
Horizontal: 

6.45060790039193e-11 

- - 0.25 

0 
Vertical: 

0.000764384712305632 

Speed 

0 
Horizontal: 

0.0419758512436594 

0 
Vertical: 

0.0194447270856484 

 

 

The sensor dynamics was modelled as a first order model in state space form as shown in Fig. 7. For 

each sensor signal component “𝑖”, the state space dynamic model was written as: 
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    �̇�𝑖 = 𝐴𝑥𝑖 + 𝐵 𝑢𝑖    (1) 

    𝑦 = 𝐶 𝑥𝑖 +  𝐷 𝑢𝑖    (2) 
Where: 

 

𝐴 = [
−𝐵𝑊 0 0

0 −𝐵𝑊 0
0 0 −𝐵𝑊

], 𝐵 = [
𝐵𝑊 0 0

0 𝐵𝑊 0
0 0 𝐵𝑊

], 𝐶 = [
1 0 0
0 1 0
0 0 1

], 𝐷 =  [
0 0 0
0 0 0
0 0 0

] 

 

 

 

Fig. 7 Sensor dynamics in state space form. 
 

C. Air Data System 
The ADS models use the dynamic pressure, angle of attack, angle of sideslip, atmospheric pressure and temperature 

as input signals and it will add noise and bias were necessary in each sensor model to return the measured values of 

the dynamic pressure, angle of attack, and angle of sideslip, atmospheric pressure and atmospheric temperature. Figure 

8 shows the Simulink block diagram of the ADS. 

Fig. 8 Simulink model of Air Data System. 

The Pitot was modelled using as input signal the dynamic pressure trough a zero-order hold to convert the 

continuous signal to discrete time. The sensor dynamics was modelled using the discrete state space model to which a 

white noise and a bias modelled as a random walk was added to obtain the dynamic pressure measured signal. Fig. 9 

shows the Simulink block diagram for this sensor. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Simulink model of the Pitot sensor. 
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The angle of attack vane sensor was modelled using as input signal the angle of attack to which a white noise and 

a bias modelled as a random walk is added. The sensor dynamics is modelled as a first order state space model. The 

signal enters a zero-order hold so a conversion from continuous system to discrete time is carried out before giving as 

output the measured angle of attack. A similar model is applied to the sideslip angle vane, the barometric altimeter and 

the temperature probe sensors but using as inputs signals the sideslip angle, the ambient static pressure and the ambient 

air temperature respectively. Fig. 10 shows the Simulink block diagram for these sensors. 

 

 

 

 

 

 

 

 

Fig. 10 Simulink model of the angle of attack, sideslip, barometric altimeter and temperature sensors. 

 

D. Inertial Measurement Unit (IMU) 
The IMU is composed of a 3-axis accelerometers and gyroscopes with angular velocity and linear acceleration as 

inputs respectively. To each signal a white noise and a bias is added, modelled as a random walk. The noisy and biased 

signal of each sensor is subjected to a first-order model dynamics in state space form and a zero-order hold to convert 

the continuous time signal to discrete time before it outputs the measured acceleration and angular velocity. True 

accelerometer and gyroscope bias signals are taken directly from the random walk. Figures 11 and 12 show the IMU 

Simulink© block diagram and each sensor model respectively. 

Fig. 11 IMU Simulink model. 

 

Fig. 12 Accelerometers and Gyroscopes Simulink model. 
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E. Magnetometer 

The magnetometer was modelled using latitude, longitude, altitude and 𝐶𝑏
𝑒 as inputs and returning the Earth’s 

magnetic field vector in the aircraft position and its true bias 𝑏𝑚. The Simulink model was constructed using a Matlab 

embedded function block that runs the wrldmagm function. White noise and a bias modelled as random walks are 

added to the wrldmagm output signal. Finally, the noisy and biased signal passes thru a first order state space model to 

mimic its dynamics and a zero-order hold to convert from continuous to discrete time. Figure 13 and Fig. 14 shows the 

magnetometer Simulink© block diagram with the embedded Matlab function and the sensor model respectively. 

 

Fig. 13 Magnetometer Simulink model – World Magnetic Model embedded function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14 Magnetometer Simulink model. 

 

F. Global Positioning System (GPS) 
The GPS model takes the simulation values of latitude, longitude, altitude and velocity as inputs. A bias modelled 

as a random walk that passes through an integrator is added to each position component. A zero-order hold and a unit 

delay is applied to the biased signal before the output of the GPS measured position. Figures 15 and 16 show the GPS 

position Simulink© block diagram and its sensor model respectively. 

 

 
         Fig. 15 GPS Simulink model (position).                                    Fig. 16 GPS Simulink model (position). 
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The GPS velocity is modelled by adding a bias to each component of the simulation velocity. Then the biased 

velocity signal is passes through a zero-order hold and a unit delay before giving the GPS measured velocity as output. 

Figures 17 and 18 show the GPS velocity Simulink© block diagram and its sensor model respectively. 

 

 
 

               Fig. 17 GPS Simulink model (velocity).                      Fig. 18 GPS Simulink model (velocity). 

V. Navigation System Extended Kalman Filter 

The navigation system fuses sensor information from the IMU (gyroscopes and accelerometers), global positioning 

system GPS, a 3-axis magnetometer and a barometric altimeter in a framework of Extended Kalman Filter with 

sequential measurement update (SMU-EKF). In this estimation method, the sensor measurements can be easily fused 

together regardless of the number of sensors, sensor update rates, and sensor data dimensions as stated and well 

documented by Oh and Johnson [30]. 

 

Fig. 19 Navigation System Extended Kalman Filter. 

 

The core sensor in the estimation algorithm is the IMU, however to increase the accuracy of the estimation a GPS, 

a 3-axis magnetometer and a barometric altimeter are used as aiding sensors. The filter´s estimated state includes the 

aircraft position, velocity, attitude, accelerometer bias and gyroscope bias. The IMU provides information of the 

measured linear acceleration 𝑎𝑚
𝑏  and measured angular velocity Ω𝑚

𝑏 . The navigation EKF algorithm estimates the IMU 

sensor bias to correct each measured signal and obtain the unbiased aircraft’s linear acceleration 𝑎𝑏 and angular 

velocity Ω𝑏. The aircraft’s acceleration has to be transformed from the body axis to the navigation frame using the 

direction cosine matrix 𝐶𝑏
𝑛 to obtain 𝑎𝑛. Since 𝑎𝑛 is a specific force, gravity must be added to obtain the aircraft 

acceleration in the navigation frame �̇�𝑛. By integrating twice, the aircraft speed 𝑉𝑛and position  𝑟𝑛 in the navigation 

frame are obtained. As shown in fig. 19,  𝑟𝑛 is used in conjunction with the world gravitation model to compute the 

gravity vector. The aircraft attitude 𝑞 is obtained by integration of the attitude rate �̇� which is computed when the 

angular velocity Ω𝑏  feeds the quaternion kinematical equations.  
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Figure 20 shows the aircraft velocity estimation results. The aircraft start flying to the north and at 20 second flight 

time the aircraft turns to the east 45 degrees and continue level flight. At 120 seconds of flight time the aircraft start 

climbing until 180 seconds of flight time where it levels and start cruise flight. The estimated velocity follows the true 

velocity accurately during all aircraft maneuvers. The estimated downward component of the aircraft velocity deviates 

in one m/s during climb, in the rest maneuvers the airspeed components deviate in 0.15 m/s. 

Fig. 20 Aircraft velocity estimation. 

 

Figure 21 shows the aircraft attitude estimation. The estimation accurately follows the aircraft attitude true value 

in all maneuvers, particularly in roll and yaw. The pitch estimation accurately follows the true value. At the beginning 

of the climb there is a deviation from the estimation of one degree and at the end of the climb when the aircraft is 

leveling for cruise there is a deviation of two degrees, however in both cases the estimation in pitch converges to the 

true value in 20 seconds.  

 

Fig. 21 Aircraft attitude estimation. 

 

true aircraft velocity 

EKF estimation 

true aircraft attitude 

EKF estimation 
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Figure 22 shows the aircraft position estimation. The estimated altitude at the beginning of the flight reaches a 

deviation of 100 meters from the true altitude value. The estimated altitude starts to converge at 40 seconds of flight 

and it reaches a good accuracy during the climb. This behavior can be caused by the low sampling time of the GPS 

used. A second reason is that this simulation was performed without including the barometric altimeter as an aiding 

sensor. In contrast the latitude and longitude estimation is very accurate, the deviations are in the order of 10−3degrees. 

 

Fig. 22 Aircraft position estimation – Latitude, Longitude, and Altitude. 

 

This simulation was repeated three times by varying the sensors bias and noise parameters without noticing an 

effect on the estimation accuracy. 

VI. Current research on EKF navigation filter 

The estimation results described in the previous section were computed without the implementation of the aircraft 

digital twin. Current research efforts are focused on the integration of the aircraft digital twin with the estimation 

algorithm described above. Figure 23 shows the integrated navigation system with the aircraft digital twin. 

Fig. 23 Proposed estimation filter. 

true aircraft position 

EKF estimation 
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The estimation algorithm described in previous section provide accurate information of 𝑎𝑏 and Ω𝑏 . This values 

will pass through a first-order filter to simulate its dynamics. In the case of Ω𝑏the value of its derivative Ω̇𝑏can be 

extracted. These values can be used together with the propulsion force 𝐹𝑡
𝑏 and moment 𝑀𝑡

𝑏, the aircraft’s controls, 

inertia matrix 𝐼𝑏, mass 𝑚 and CG location to feed the equations of motion (3) and (4) to obtain the measured aircraft’s 

aerodynamic force 𝐹𝑎
𝑏 and moment 𝑀𝑎

𝑏. 

 

𝑀𝑎
𝑏 = 𝐼𝑏Ω̇𝑏 − 𝑀𝑡

𝑏 + Ω𝑏 × 𝐼𝑏 × Ω𝑏                                                              (3) 

 

𝐹𝑎
𝑏 = 𝑚𝑎𝑏 − 𝐹𝑡

𝑏                                                               (4) 

 

The values of 𝐹𝑎
𝑏 and 𝑀𝑎

𝑏 will be used for two tasks. The first task will be to feed a second Kalman based estimation 

algorithm in conjunction with the attitude estimated in the navigation EKF filter and the measured values of airspeed, 

angle of attack and sideslip from the ADS. The second task will be to train the aircraft digital twin model that will act 

as a virtual sensor and that it will also provide virtual values of 𝐹𝑎
𝑏 and 𝑀𝑎

𝑏 to the second EKF, aiding in the estimation 

of the airspeed, angle of attack, angle of sideslip and 𝑤𝑏  in the case of an ADS failure. 

VI. Conclusion 

This paper discusses different methods to estimate the aircraft airspeed and other state variables in case of a Pitot 

tube failure. The EKF navigation filter with sequential measurement update has shown to be a promising tool in the 

estimation of the airspeed, attitude and position with enough accuracy and low computational effort. The addition of 

adding sensors like the barometric altimeter to the estimation and the digital twin virtual sensor will increase the 

accuracy of the estimation filter especially in the estimation of the downward component of the velocity and the 

altitude. Higher GPS sample rates are desirable to decrease the time of the altitude estimation convergence. In addition 

a parametric study on the EKF estimation performance must be carried out varying the sensor parameters and noise. 
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