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Abstract. The aircraft air data system is used for estimating vital flight parameters 

for correct and safe aircraft operations. One of the main components in this system 

is the Pitot tube sensor which is responsible for measuring the total pressure and in 
conjunction with the static pressure port estimates parameters like altitude, air speed, 

vertical speed and Mach number. The Pitot tube is prone to failure because of 

external adverse atmospheric conditions. The current research aims to develop a 
solution to the aircraft loss of control caused by unreliable and/or faulty airspeed 

measurements by developing an air data system tolerant to the Pitot sensor failure 

based on extra sensor measurements and an estimation algorithm that uses a digital 
twin aircraft dynamic model as a virtual sensor. 
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Introduction 

The Air Data System (ADS) plays a vital role in aircraft operation. The information 

provided by this device is used by the pilot and other aircraft subsystems for maneuvering 

and navigating within safe performance boundaries. There is a history of aircraft 

accidents caused by the failure of one of the ADS sensor, the Pitot tube, for example Air 

France flight 447 in June 2009, Saratov Airlines flight 6W703 and Lion Air flight 610 in 

2018. Table 1 shows a list of some selected non-military aircraft accidents caused by 

suspected Pitot tube failure since 1973. 

The Pitot tube sensor is responsible for airspeed estimation. Under certain 

atmospheric conditions the sensor becomes covered or blocked with ice, dirt or even 

ground protection devices and, as a result, the computed airspeed becomes erratic or 

unreliable. This affects air safety as pilots may not be able to identify the failure and 

become confused due to unreliable and conflicting warnings. In unmanned air vehicles 

the situation is also critical because the autopilot is receiving erratic information from 

the ADS system causing a total loss of control. 
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Aircraft manufacturers have implemented sensor redundancy with a voting scheme 

to detect and isolate faulty air data sensor signals. However under certain atmospheric 

circumstances all sensors might fail at the same time, which is called common mode 

failures. Common mode failures by caused by cold and humid atmospheric air were icing 

can block the dynamic and static orifices and drain holes. Water can also accumulate in 

the probe or pressure lines when the drain hole is obstructed by ice or a foreign object. 

Table 1. Civil aircraft accidents caused by Air Data System failure. 

Aircraft automatic control systems are intended to improve flight safety and reduce 

flight crew workload, however they do rely on the sensor systems working properly. As 

evident by recent accidents, due to system complexity, sensor failure can lead to sudden 

and unexpected adverse aircraft behaviour which can leave the flight crew confused and 

unable to react effectively. 

1. Modelling Virtual Sensors 

The airspeed sensor failure problem has been worked out by means of a Sensor failure 

detection identification and accommodation (SFDIA) task. SFDIA has been traditionally 

divided in two steps. The first step involves the detection of the sensor failure and 

identification (SFDI) of the sensor that is generating the unhealthy signal so the corrupted 

hardware can be isolated. Sensor failure accommodation (SFA), the second task, consist 

in the numerical estimation of the airspeed by means of a virtual sensor  and the statistical 

comparison of this value with the sensor (or sensors) signal so the healthy parameter can 

be selected and used in the flight control system. 

1.1 Model based virtual sensors 

The model-based airspeed estimation approach takes advantage of the well-known 

aircraft nonlinear dynamic model and measurements from the onboard sensors [1,2]. The 

model state variables are the true air speed, angles of attack and side slip, angular rates, 

Date Aircraft 
Damage 

Cause Casualties 
/ Injured 

30 January 1973 Aircraft total Loss Ice in Pitot tubes 0 

1 December 
1974 

Aircraft total Loss Ice in Pitot tubes 3 

28 July 1984 Aircraft total Loss Pitot tube covers not removed 0 

21 May 1986 Aircraft total Loss Ice on Pitot tubes 0 
2 March 1994 Structural 

damage 

Ice on Pitot tubes 0 

6 February 1996 Aircraft total loss Dust or insect debris blocking Pitot tubes orifices 189 

2 October 1996 Aircraft total loss Adhesive tape blocking ADS static port orifice 70 

10 October 1997 Aircraft total loss Ice on Pitot tubes 74 
7 April 1999 Aircraft total loss Ice on Pitot tubes 6 

17 October 1999 Aircraft total loss Ice blocking Pitot tube drain orifices 0 

3 June 2006 Aircraft total loss Obstruction of Pitot tube orifices 0 
25 February 

2009 

Aircraft total loss Radio Altimeter failure 9/50 

1 June 2009 Aircraft total loss Obstruction of Pitot tube orifices 228 
11 February 

2018 

Aircraft total loss Ice on Pitot Tubes 71 

29 October 2018 Aircraft total loss ADS Failure 189 
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Euler attitude angles and the GPS-based aircraft positions. The state control variables 

rely on thrust force and elevator, rudder, and aileron deflections. The airspeed is implicit 

in all the 12 equations of the aircraft nonlinear model, however an effort was made to 

reduce the computational effort by using only the angle of attack equation that is strongly 

correlated with air speed [3]. This equation is expressed in a form that is suitable for 

parameter identification with a linear combination of unknown coefficients and known 

nonlinear function of measured signals. The equation is evaluated at several instants on 

a time window to set up a linear systems of equations that is solved for the unknown 

equation coefficients using least squares and taking advantage of previously recorded 

flight test data. The online estimates of the airspeed at a particular time are based on the 

online solution of the quadratic equation were the unknown coefficients are substituted 

by the LS estimate and only the positive value of the airspeed is selected. The results 

showed that the accuracy of the method is about 5% of the mean velocity. 

1.2 Model independent virtual sensors 

The model-independent virtual sensors are of great interest because the estimation 

method can be applied conveniently to any aircraft without information of the vehicle 

dynamics which most of the time is difficult to obtain. Kalman Filter based estimators 

and data driven methods based on NN are commonly employed. Napolitano et al. 

developed model independent virtual sensors by using Extended and Unscented Kalman 

Filter estimators [3-6]. The data-driven approach of model independent virtual sensors 

take advantage of artificial neural networks - ANN (Multi-Layer Perceptron - MLP and 

Extended Minimal Resource Allocating Network – EMRAN) [6].  

The MLP ANN was selected for the estimation of airspeed due to its flexibility [6]. 

The MLP is trained to learn the functional relationships between the airspeed and a set 

of correlated measurements provided by the other aircraft sensors. The MLP architecture 

employed consists of one hidden layer with three neurons and a sigmoid activation 

function. ANN training uses angular rates, linear accelerations, angles of attack, sideslip 

and roll and angle of pitch as inputs. 

The EMRAN ANN architecture allows only the parameters of the most active 

neurons to be updated, while the others are left unchanged. Essentially, the EMRAN 

algorithm allocates neurons in order to decrease the estimation error in regions of the 

state space where the mapping accuracy is poor. This strategy results in a significant 

reduction of the number of parameters to be updated online, thus reducing the 

computational burden, and therefore making this architecture particularly suitable for 

online applications. The procedure followed to train and validate the EMRAN ANN is 

similar to the MLP ANN with the difference that in initializing the interconnection 

weights and biases step the network starts without hidden layer neurons based on the 

three error criteria [6]. 

2. Proposed Methodology 

The objective of the project is to develop a new 

approach to perform SFDIA in case of ADS sensor 

failure. The SFDIA algorithm estimates the aircraft 

airspeed and other aircraft parameters using 

information from gyroscopes and accelerometers. A Figure 1. Aircraft digital twin concept. 
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Global Positioning System - GPS, a magnetometer and a barometric altimeter are used 

as aiding sensors for estimation purposes. Sensor data fusion and estimation are done by 

a Kalman Filter based algorithm assisted by an accurate aircraft dynamic model acting 

as a virtual sensor referred to as the Aircraft Digital Twin (Figure 1). FDI is carried out 

automatically by statistical evaluation of the sensor residual signal and accommodation 

is done automatically by modulating the faulty sensors covariance by giving it less 

weight during the estimation process. The proposed system is shown in Figure 2. 

Figure 2. Proposed airspeed estimation scheme. 

2.1 Air Data System 

The ADS models use dynamic pressure, angle of attack, angle of sideslip, atmospheric 

pressure and temperature as input signals and adds noise and bias in each sensor model 

to return the measured values. Figure 3 shows the Simulink block diagram of the ADS. 

 
Figure 3. Simulink model of Air Data System. 

The Pitot was modelled using as input signal the dynamic pressure trough a zero-

order hold to convert the continuous signal to discrete time. The sensor dynamics was 

modelled using the discrete state space model to which a white noise and a bias modelled 

as a random walk was added to obtain the dynamic pressure measured signal. Figure 4 
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shows the Simulink block diagram for this sensor. The angle of attack vane sensor was 

modelled using as input signal the angle of attack to which a white noise and a bias 

modelled as a random walk is added. The sensor dynamics is modelled as a first order 

state space model. The signal enters a zero-order hold so a conversion from continuous 

system to discrete time is carried out before giving as output the measured angle of attack. 

 
Figure 4. Simulink model of the Pitot sensor. 

A similar model is applied to the sideslip angle vane, the barometric altimeter and 

the temperature probe sensors but using the sideslip angle, the ambient static pressure 

and the ambient air temperature respectively as inputs signals. Figure 5 shows the 

Simulink block diagram for these sensors. 

 

 

 

 

 

 
Figure 5. Simulink model of the angle of attack, sideslip, barometric altimeter and temperature sensors. 

2.2 Inertial Measurement Unit (IMU) 

The IMU is composed of 3-axis accelerometers and gyroscopes with angular velocity 

and linear acceleration as inputs respectively. To each signal a white noise and a bias is 

added, modelled as a random walk. The noisy and biased signal of each sensor is 

subjected to a first-order model dynamics in state space form and a zero-order hold to 

convert the continuous time signal to discrete time before it outputs the measured 

acceleration and angular velocity. True accelerometer and gyroscope bias signals are 

taken directly from the random walk. Figures 6 and 7 show the IMU Simulink© block 

diagram and each sensor model respectively. 

2.3 Magnetometer 

The magnetometer was modelled using latitude, longitude, altitude and  as inputs and 

returning the Earth’s magnetic field vector in the aircraft position and its true bias . 

The Simulink model was constructed using a Matlab embedded function block that runs 

the wrldmagm function. White noise and a bias were modelled as random walks and 
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added to the wrldmagm output signal. The noisy and biased signal was passed through a 

first-order state space model to mimic its dynamics and a zero-order hold to convert from 

continuous to discrete time. Figure 8 shows the magnetometer Simulink© block diagram. 

 

 
Figure 7. Accelerometers and Gyroscopes Simulink model. 

2.4 Global Positioning System (GPS) 

The GPS model takes the simulation values of latitude, longitude, altitude and velocity 

as inputs. A bias modelled as a random walk that passes through an integrator is added 

to each position component. A zero-order hold and a unit delay is applied to the biased 

signal before the output of the GPS measured position. Figure 9 show the GPS position 

Simulink© block diagram and its sensor model. 

The GPS velocity is modelled by adding a bias to each component of the simulation 

velocity. Then the biased velocity signal is passed through a zero-order hold and a unit 

delay before giving the GPS measured velocity as output. Figure 10 shows the GPS 

velocity Simulink© block diagram and its sensor model. 

Figure 6. Inertial Measurement Unit Simulink model. 
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Figure 8. Magnetometer Simulink model. 

 

 
Figure 9. GPS Simulink model (position). 

 

 
Figure 10. GPS Simulink model (velocity). 

3. Navigation System Extended Kalman Filter  

The navigation system fuses sensor information from the IMU (gyroscopes and 

accelerometers), global positioning system GPS, a 3-axis magnetometer and a barometric 

altimeter in a framework of Extended Kalman Filter with sequential measurement update 

(SMU-EKF). In this estimation method, the sensor measurements can easily be fused 

regardless of the number of sensors, sensor update rates, and sensor data dimensions [7]. 

The core sensor in the estimation algorithm is the IMU, however to increase the 

accuracy of the estimation a GPS, a 3-axis magnetometer and a barometric altimeter are 

used as supporting sensors. The filter´s estimated state includes the aircraft position, 

velocity, attitude, accelerometer bias and gyroscope bias. The IMU provides the 

measured linear acceleration  and angular velocity . 
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Figure 11. Navigation System Extended Kalman Filter. 

 

The navigation EKF algorithm estimates the IMU sensor bias to correct each 

measured signal and obtain the unbiased linear acceleration  and angular velocity . 

The acceleration is transformed from the body axis to the navigation frame using the 

direction cosine matrix  to obtain . Since  is a specific force, gravity is added to 

obtain the acceleration in the navigation frame . By integrating twice, the speed  

and position  in the navigation frame are obtained. As shown in Figure 11,   is used 

in conjunction with the world gravitation model to compute the gravity vector. The 

aircraft attitude  is obtained by integration of the attitude rate  which is computed 

when the angular velocity feeds the quaternion kinematical equations. 
Figure 12 shows the aircraft velocity estimation results. The aircraft flys north and 

after 20 s it turns east 45 degrees and continue level flight. After 120 s it starts climbing 

until 180 s when it levels off. The estimated velocity follows the true velocity accurately 

during all maneuvers. The estimated downward component of the velocity deviates 1 m/s 

during climb, in other maneuvers the airspeed components deviate 0.15 m/s. 

Figure 13 shows the aircraft attitude estimation. The estimation accurately follows 

the aircraft attitude true value in all maneuvers, particularly in roll and yaw. At the 

beginning of the climb there is a deviation of 1 degree and when the aircraft is leveling 

for cruise there is a deviation of 2 degrees, however in both cases the estimation in pitch 

converges to the true value in 20 s.This simulation was repeated three times by varying 

the sensors bias and noise parameters without noticing an effect on the estimation 

accuracy. 

The estimation results described in the previous section were computed without the 

implementation of the aircraft digital twin. Current research efforts are focused on the 

integration of the aircraft digital twin with the estimation algorithm described above. 

Figure 14 shows the integrated navigation system with the aircraft digital twin. 

The estimation algorithm described in previous section provide accurate information 

of  and . This values will pass through a first-order filter to simulate its dynamics. 

In the case of the value of its derivative can be extracted. These values can be used 

together with the propulsion force  and moment , the aircraft’s controls, inertia 

matrix , mass  and CG location to feed the equations of motion (1) and (2) to obtain 

the measured aircraft’s aerodynamic force  and moment . 
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Figure 12. Aircraft velocity estimation. 

 

Figure 13. Aircraft attitude estimation. 

 

                              (1) 

 

                                (2) 

 

The values of  and  will be used for two tasks. The first task will be to feed a 

second Kalman based estimation algorithm in conjunction with the attitude estimated in 

the navigation EKF filter and the measured values of airspeed, angle of attack and 

sideslip from the ADS. The second task will be to train the aircraft digital twin model 

that will act as a virtual sensor and that it will also provide virtual values of  and  

to the second EKF, aiding in the estimation of the airspeed, angle of attack, angle of 

sideslip and  in the case of an ADS failure. 

True velocity 

EKF estimation 

True attitude 

EKF estimation 
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Figure 14. Proposed estimation filter. 

4. Conclusion 

This paper discusses different methods to estimate the aircraft airspeed and other state 

variables in case of a Pitot tube failure. The EKF navigation filter with sequential 

measurement update has shown to be a promising tool in the estimation of the airspeed, 

attitude and position with enough accuracy and low computational effort. The addition 

of adding sensors like the barometric altimeter to the estimation and the digital twin 

virtual sensor will increase the accuracy of the estimation filter especially in the 

estimation of the downward component of the velocity and the altitude. Higher GPS 

sample rates are desirable to decrease the time of the altitude estimation convergence. In 

addition a parametric study on the EKF estimation performance must be carried out 

varying the sensor parameters and noise. 
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