
Adaptive Mode Transition Control Architecture with an
Application to Unmanned Aerial Vehicles

A Dissertation
Presented to

The Academic Faculty

By:

Luis Benigno Gutiérrez Zea

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
July 2004

Adaptive Mode Transition Control Architecture with an
Application to Unmanned Aerial Vehicles

Approved by:

Dr. George Vachtsevanos, Advisor

Dr. Bonnie Heck, Co-Advisor

Dr. Linda Wills

Dr. Magnus Egerstedt

Dr. J. V. R. Prasad

May 19, 2004

iii

To my family and the memory of my father

iv

ACKNOWLEDGEMENT

I would like to thank Dr. George Vachtsevanos, my advisor, for his

encouragement and support during my PhD studies at Georgia Institute of Technology. I

thank Dr. Bonnie Heck, my co-advisor, and also Dr. Linda Wills, Dr. Magnus Egerstedt,

and Dr. J. V. R. Prasad for serving on my examination committees and for their valuable

suggestions that guided me through the completion of my thesis. I thank the UAV lab

team headed by Dr. Eric Johnson for their help and support for the flight tests. I

acknowledge the financial support of DARPA/AFRL, sponsor of the Software Enable

Control research program. Finally, I would like to acknowledge the support received

from my home country, Colombia, from the Colombian Fulbright Commission,

Colciencias, and Pontificia Bolivariana University at Medellín.

v

TABLE OF CONTENTS

Acknowledgements iv

List of Tables viii

List of Figures ix

Summary xiii

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Assumptions 4

1.4 Overview 5

Chapter 2 Background 6

Chapter 3 Fuzzy Neural Networks 15

3.1 Fuzzy Neural Network Structure 15

3.2 Development of a Recursive Least Squares Learning Algorithm for

Fuzzy Neural Networks 19

3.3 Learning Based on Adjustment of Output Values 24

Chapter 4 Active Modeling Framework 27

4.1 Active Plant Models for a Nonlinear Discrete Time System 27

4.2 Incorporation of Known Nonlinearities in Active Plant Models for

Vehicles in 3D Space 29

4.3 Computation of Incremental Models from Active Plant Models 30

Chapter 5 Overall Architecture for Control of Unmanned Aerial Vehicles 34

5.1 High level: Mission Planning 36

vi

5.2 Middle Level: Trajectory Generation 38

5.3 Low Level: Adaptive Mode Transition Control 40

5.3.1 Mode Transition Control Component 41

5.3.2 Adaptation Mechanism Component 56

Chapter 6 Software Implementation of the Adaptive Mode Transition Control 62

6.1 Source Code Organization 62

6.2 Adaptive Mode Transition Control Library 65

6.2.1 Low Level or Basic Classes 66

6.2.2 Intermediate Level Classes 67

6.2.3 High Level Classes 69

6.2.4 Other Functionalities Included in the Adaptive Mode
Transition Control Library 79

6.3 Utilities for Manipulation of an Adaptive Mode Transition Control 80

6.3.1 Setup, Update, and Visualization of an Adaptive Mode
Transition Control Initialization File 80

6.3.2 Generation of a Mission Initialization File 82

6.3.3 Stand Alone Simulation of the Adaptive Mode Transition
Control Architecture 83

6.3.4 Stand Alone Executable for Hardware in the Loop Simulation
and Flight Testing 83

6.3.5 Conversion of Simulation and Flight Data File to a m-file for
Matlab 84

6.4 S-functions for Testing of the Adaptive Mode Transition Control in

Simulink 84

Chapter 7 Implementation on the Open Control Platform 86

7.1 Implementation on the OCP Using the Controls API 86

7.2 Implementation Using the Hybrid Controls API 90

vii

Chapter 8 Simulation and Flight Test Results 93

8.1 GTmax Simulation Environment 93

8.2 Simulation and Flight Configurations 94

8.2.1 Software in the Loop Simulation Configuration 94

8.2.2 Hardware in the Loop Simulation Configuration 97

8.2.3 Flight Test Configuration 98

8.3 Parameters for Simulations and Flight Test 99

8.4 Software in the Loop Simulation Results 100

8.5 Flight Test Results 123

Chapter 9 Conclusion and Future Research 141

Publications 143

References 144

viii

LIST OF TABLES

Table 1. Performance Metrics for Software in the Loop Simulations 101

Table 2. Performance Metrics for Flight Test 124

ix

LIST OF FIGURES

Figure 1. Illustration of Local Modes and Transition Regions for a Rotorcraft
UAV 3

Figure 2. Fuzzy Neural Network Structure 17

Figure 3. Overall Architecture for the Adaptive Mode Transition Control 35

Figure 4. Mission Planning Component Functionality 37

Figure 5. Trajectory Generation Component Functionality 39

Figure 6. Structure of the Adaptive Mode Transition Control 40

Figure 7. Mode Transition Controller 41

Figure 8. Set Point Filter 42

Figure 9. Limiting Filter 43

Figure 10. Smoothing Filter 44

Figure 11. State Filter 46

Figure 12. Local Controllers Structure 49

Figure 13. Active Control Models Structure 52

Figure 14. Structure of the Implementation on the OCP 87

Figure 15. Steps for Implementation on the OCP 88

Figure 16. Local Mode Configuration for the Mode Transition Control
Component 91

Figure 17. Transition Configuration for the Mode Transition Control Component 92

Figure 18. The GTmax 93

Figure 19. A Screen Shot of the GTmax Software 95

Figure 20. Software in the Loop Configuration 96

Figure 21. Hardware in the Loop Configuration 97

x

Figure 22. Flight Configuration 98

Figure 23. Software in the Loop Simulation Results for Hover: (a) Desired and
Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory 103

Figure 24. Software in the Loop Simulation Results for Hover: (a) Desired and
Actual Position and Heading; (b) Desired and Actual Velocity in
Body Frame 104

Figure 25. Software in the Loop Simulation Results for Hover: (a) Position and
Heading Errors; (b) Velocity Errors in Body Frame 105

Figure 26. Software in the Loop Simulation Results for Hover: Actuator
Commands 106

Figure 27. Software in the Loop Simulation Results for Hover: Plant Model
Errors for Velocity, Euler Angle Rates and Main Rotor RPM 107

Figure 28. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Desired and Actual 2D Trajectory; (b) Desired and
Actual 3D Trajectory 108

Figure 29. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Desired and Actual Position and Heading; (b) Desired
and Actual Velocity in Body Frame 109

Figure 30. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Position and Heading Errors; (b) Velocity Errors in
Body Frame 110

Figure 31. Software in the Loop Simulation Results for Hover with Heading
Changes: Actuator Commands 111

Figure 32. Software in the Loop Simulation Results for Hover with Heading
Changes: Plant Model Errors for Velocity, Euler Angle Rates and
Main Rotor RPM 112

Figure 33. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Desired
and Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory 113

Figure 34. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Desired
and Actual Position and Heading; (b) Desired and Actual Velocity in
Body Frame 114

xi

Figure 35. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Position
and Heading Errors; (b) Velocity Errors in Body Frame 115

Figure 36. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: Actuator
Commands 116

Figure 37. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: Plant Model
Errors for Velocity, Euler Angle Rates and Main Rotor RPM 117

Figure 38. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
(a) Desired and Actual 2D Trajectory; (b) Desired and Actual 3D
Trajectory 118

Figure 39. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
(a) Desired and Actual Position and Heading; (b) Desired and Actual
Velocity in Body Frame 119

Figure 40. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
(a) Position and Heading Errors; (b) Velocity Errors in Body Frame 120

Figure 41. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
Actuator Commands 121

Figure 42. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
Plant Model Errors for Velocity, Euler Angle Rates and Main Rotor
RPM 122

Figure 43. Flight Test Results for Hover: (a) Desired and Actual 2D Trajectory;
(b) Desired and Actual 3D Trajectory 126

Figure 44. Flight Test Results for Hover: (a) Desired and Actual Position and
Heading; (b) Desired and Actual Velocity in Body Frame 127

Figure 45. Flight Test Results for Hover: (a) Position and Heading Errors; (b)
Velocity Errors in Body Frame 128

Figure 46. Flight Test Results for Hover: Actuator Commands 129

Figure 47. Flight Test Results for Hover: Plant Model Errors for Velocity, Euler
Angle Rates and Main Rotor RPM 130

Figure 48. Flight Test Results for Hover with Heading Changes: (a) Desired and
Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory 131

xii

Figure 49. Flight Test Results for Hover with Heading Changes: (a) Desired and
Actual Position and Heading; (b) Desired and Actual Velocity in
Body Frame 132

Figure 50. Flight Test Results for Hover with Heading Changes: (a) Position and
Heading Errors; (b) Velocity Errors in Body Frame 133

Figure 51. Flight Test Results for Hover with Heading Changes: Actuator
Commands 134

Figure 52. Flight Test Results for Hover with Heading Changes: Plant Model
Errors for Velocity, Euler Angle Rates and Main Rotor RPM 135

Figure 53. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: (a) Desired and Actual 2D
Trajectory; (b) Desired and Actual 3D Trajectory 136

Figure 54. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: (a) Desired and Actual Position
and Heading; (b) Desired and Actual Velocity in Body Frame 137

Figure 55. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: (a) Position and Heading Errors;
(b) Velocity Errors in Body Frame 138

Figure 56. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: Actuator Commands 139

Figure 57. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: Plant Model Errors for Velocity,
Euler Angle Rates and Main Rotor RPM 140

xiii

SUMMARY

Unmanned Aerial Vehicles (UAVs) are required to possess levels of autonomy in

order to execute complex missions robustly and reliably. Intelligent/hierarchical control

techniques have been suggested as a means to address critical autonomy issues. The

objective of this research is to develop a hierarchical/intelligent control architecture for

an UAV. The architecture consists of three levels: high level, middle level, and low level.

Mission planning routines occupy the highest level. At this level, information about

waypoints that the vehicle must follow is used to generate the sequence of actions that

should be performed to go through those waypoints while maintaining some physical

constraints. These actions are split into a sequence of tasks; each of them containing

target position, target speed, target heading, heading mode, and target direction of the

flight path. The tasks are then stored in a task queue and sent in an orderly manner to the

middle level. The middle-level controller coordinates task execution while a trajectory

generation component receives the task information from the high-level module and

provides set points for low-level stabilizing controllers whose function is to maintain the

vehicle in a stable state and follow accurately the commanded trajectory. An adaptive

mode transitioning control algorithm resides at the lowest level of the hierarchy

consisting of two components: a mode transitioning controller and the accompanying

adaptation mechanism. The mode transition controller is composed of a mode transition

manager, a set of local controllers, and a set of active control models. Local controllers

operate in local modes and active control models operate in transitions between two local

modes. The mode transition manager determines the actual mode of operation of the

xiv

vehicle based on a set of mode membership functions and activates a local controller or

an active control model accordingly. The adaptation mechanism uses an indirect adaptive

control methodology to adapt the active control models. For this purpose, a set of plant

models is trained based on input/output information from the vehicle and used to

compute the linearized models required by the adaptation algorithms. The core of the

adaptation mechanism is a finite horizon optimal control algorithm, which determines the

optimal control signal that in turn is used to train the active control models. The

adaptation routine may be turned on only when needed. The transitioning algorithm

operates in real-time while adapting on-line to disturbances and other external inputs.

This intelligent/hierarchical architecture has been implemented using a novel software

infrastructure called Open Control Platform (OCP), which facilitates interoperability,

plug-and-play and other functionalities. Simulation and flight test results validate the

proposed scheme.

The main contributions of this research are:

• Development of a hierarchical architecture for the implementation of the adaptive

mode transition control, flexible enough to be able to accommodate future

enhancements and more intelligent at the highest level of the hierarchy.

• Development of a new approach to the adaptive mode transition control problem

addressing main concerns from previous accomplishments in this area.

• Exploitation of new software technologies including the OCP and hybrid controls

API to show how they enable the implementation of advanced control algorithms

for UAVs.

xv

• Implementation of the architecture and verification of its performance in software

in the loop simulation, hardware in the loop simulation and through flight testing.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Control of unmanned aerial vehicles (UAVs) presents unique challenges not only

in the design of control algorithms, but also in the strategies and methodologies used to

integrate and implement those algorithms on actual vehicles. The dynamics of UAVs are

usually highly non-linear and difficult to model accurately due to the complexity of the

aerodynamic and propulsive forces acting on the vehicles. The environment in which

UAVs operate is also uncertain, leading to unexpected disturbances. This means that

control algorithms have to be able to cope with the uncertainty associated with the UAV

dynamics (parametric and structural) as well as those associated with the environment

(external perturbations) using robust or adaptive techniques. The first UAVs were

remotely piloted, but current tendency is to eliminate the remote pilot and give the

vehicles enough intelligence so that they can perform their missions autonomously. To

achieve the required intelligence, it is necessary to develop hierarchical architectures that

consider not only low level control objectives, stabilization and tracking, but also

incorporate high level objectives such as mission planning, scheduling, etc. Therefore,

new technologies need to be developed for UAVs including control algorithms to

improve the degree of autonomy/intelligence and architectures to implement these

algorithms in an efficient manner.

2

1.2 Problem Statement

Before presenting the problem statement, some required definitions related to a

UAV are presented.

Definition 1. Local mode.

A local mode is a region of the state space around an operating point in which the

vehicle exhibits quasi steady state behavior. Quasi steady state behavior means that some

of the state variables remain constant in that operating point.

For example, some local modes for a helicopter are hover, forward flight at a

constant speed, backward flight at a constant speed, and sideward flight at a constant

speed. For the operating points associated with these local modes the velocity is constant

and the angular rates are zero.

Definition 2. Local Controller.

A local controller is a controller that guarantees the stability and some tracking

performance of the closed loop system for any feasible reference trajectory in a local

mode.

Definition 3. Transition Region.

A transition region is a region of the state space outside any local mode that

includes all the feasible trajectories between two local modes.

For example, some transition regions for a helicopter are hover to forward flight

at a constant speed, hover to backward flight at a constant speed, and hover to sideward

flight at a constant speed.

3

Definition 4. Operating Region.

The operating region is the region of the state space generated by the union of all

the local modes and transition regions.

These definitions are illustrated in Figure 1 where a map of the state space for a

rotorcraft UAV is presented. In that map only forward and sideward velocity are

considered since they are the ones that determine major changes in the dynamics. For the

case showed, five local modes are considered (in blue) with four transitions (in light

blue). The designer selects the number of modes and transitions, so more modes or

transitions can be selected if the operating region of the vehicle needs to be extended.

Figure 1. Illustration of Local Modes and Transition Regions for a Rotorcraft UAV

The problem addressed in this research can be stated as follows: consider a

rotorcraft UAV (also called rotary wing UAV).

Transition 2

Transition
3

Transition
4

Mode 5
20ft/sec

Transition 1

State space map Forward velocity

Sideward velocity

Local modes

Transition regions

Mode 1
Hover

Mode 4
20 ft/sec

Mode 2
FF 25ft/sec

Mode 3
FF 50ft/sec

4

• Given a set of local modes, design local controllers able to control the vehicle in their

respective local modes in a stable fashion.

• Develop a controller able to operate in a stable fashion in the operating region

including the local modes and the transitions among them based on the local

controllers. This controller should operate as one controller in the whole operating

region.

• The controller should be able to adapt to internal and external disturbances

maintaining a stable operation in the whole operating region.

• Develop the architecture for the implementation of the control methodology.

1.3 Assumptions

The work presented in this thesis was done under the following assumptions:

• Desired UAV trajectories are produced by a trajectory generator based on commands

received from a mission planning component.

• Trajectory commands do not induce controller saturation.

• Local modes are selected and local controllers are designed such that the stability and

prescribed performance of the closed loop system is guaranteed on the local modes

and at least the stability is guaranteed on transition regions adjacent to corresponding

local modes.

• Local Modes and transition regions are selected such that they cover the operating

region of the vehicle

5

1.4 Overview

This dissertation is divided into nine chapters. After this brief introduction,

Chapter 2 presents background and related work including a discussion of the state of the

art in the area. A discussion about fuzzy neural networks and the development of two

new learning algorithms for them are presented in Chapter 3. In Chapter 4, the active

modeling framework used to represent the models of the plant under control is presented.

Chapter 5 presents the main topic of this dissertation, the overall architecture for the

adaptive mode transition control. Chapter 6 describes the software implementation of the

proposed architecture. Chapter 7 describes the implementation using the Open Control

Platform (OCP). In Chapter 8, simulation and flight test results are presented. Finally,

Chapter 9 presents conclusions of the work completed and future research needed in this

topic.

6

CHAPTER 2

BACKGROUND

The complex nonlinear dynamics of UAVs, as other large-scale systems, usually

present multiple modes of operation with very different dynamic behaviors that require

stable, robust and smooth transitions between them. Several control techniques have been

developed to cope with the non-linearities across different operating modes, model

uncertainties, external disturbances, and, in some cases, input saturation. These

techniques include gain scheduling, sliding mode control, adaptive control, and recently

model predictive control.

In the gain scheduling methodology a nonlinear controller is constructed

combining a family of linear controllers [1, 2]. A scheduling variable is selected that

could be a function of the state, the outputs of the system, or an exogenous variable.

Linear controllers are designed for a finite number of operating conditions corresponding

to different values of the scheduling variable. Then, the controller parameters used at any

time are obtained by interpolation based on the actual value of the scheduling variable [3-

5]. This technique relies on a slow variation of the scheduling variable and usually

requires the design of many linear controllers to cover the operating region of the system.

For conventional gain scheduling only linearizations of the plant at equilibrium operating

points are considered for the design of the controller, an extension to the case of non-

equilibrium operating points was given in [6].

Developments in recent years have given a more rigorous treatment to the gain

scheduling approach, leading to design methodologies that guarantee the stability and

7

robustness of the closed loop system given that the scheduling variable remains in a

compact set. For instance, in [7] a interpolation technique for the controller and observer

gains was developed that guarantees the local stability at any value of the scheduling

variable whenever some easily computed bounds on the rate of the scheduling variable

are met. In some of the new methods for robust gain scheduling, the nonlinear dynamics

of the plant is represented by a linear parameter varying (LPV) system, i.e. a linear time-

varying system whose state-space matrices are fixed functions of a vector of varying

parameters [8-10]. In [8] a LPV controller is developed that guarantees ∞H performance

for LPV polytopic plants, i.e. those whose parameter vectors are in a polytope in the

parameter space and whose state-space matrices are affine functions of the parameter

vector. The case of LPV plants whose state-space matrices have a linear fractional

dependence on the parameters is considered in [9]. These approaches are too conservative

since they do not assume any bounds on the rate of change of the parameters. A less

conservative and more general approach is presented in [10]. In all these cases the

problem is solved in the context of convex semidefinite programming [11], being reduced

to the solution of a set of linear matrix inequalities (LMIs). LMI techniques are now used

as a powerful tool to solve many problems in control [12]. Currently, there is efficient

optimization software that allows the solution of these kind of problems [13]. Fuzzy gain

scheduling has also been presented in the literature as a way for implementing gain

scheduling controllers [14, 15]. In those cases the advanced gain scheduling techniques

like the ones discussed before are applied to a system modeled by a Takagi-Sugeno fuzzy

system.

8

A controller for a small UAV that uses gain scheduling can be found in [16, 17].

They have demonstrated autonomous extreme maneuvers for a small unmanned

helicopter. They used two controllers, one for longitudinal-vertical dynamics and other

for the lateral-directional dynamics. Both controllers are based on an LQ design

augmented with integrators for accurate tracking of angular rates, controller gains were

scheduled on forward velocity. Notch filters were used for dynamic compensation of

fuselage-rotor dynamics given that LQ controllers were designed using a reduced order

model discarding the rotor flapping dynamics [18].

In the sliding mode control methodology (more generally called variable structure

control), a high speed switching control strategy is used to force the state of the system to

be in a surface called the sliding mode or switching surface that is a manifold of the state

space chosen for the designer to meet the desired control goal like stabilization, tracking,

or regulation [19]. This technique is very attractive because it makes the controller very

robust to model uncertainties and external disturbances, i.e. once the state gets to the

sliding surface the behavior of the system becomes independent of system parameters.

The major disadvantage associated to this methodology is the chattering effect in the

actuators; however, there are ways to avoid that problem [20, 21]. Fuzzy sliding mode

control techniques have been proposed in the literature that combine fuzzy models with

sliding mode control [22, 23]. Those methods alleviate the effect of chattering and allow

the sliding mode control of systems without a previous knowledge of their model.

Applications of variable structure control or sliding mode control have been reported in

the literature for a variety of nonlinear systems including, for instance, aircrafts [24, 25]

9

and robot manipulators [26, 27]. An application of sliding mode control for close

formation flight of multiple UAVs is presented in [28].

There are many adaptive control methodologies proposed in the literature [29]. In

adaptive control the controller parameters are adapted online to accommodate for

uncertainties in the model or improve control performance in presence of external

disturbances. This adaptation or continuous change in the parameters is determined by an

adaptation rule that is based on input/output information from the plant being controlled

and should guarantee the stability of the closed loop system. Adaptive control techniques

are classified as either direct or indirect. In direct adaptive control, controller parameters

are directly adapted based on input/output information of the plant and at times the output

of a desired reference model. On the other hand, indirect adaptive control methods try to

estimate the parameters of the plant model based on input/output information from the

plant and then use these estimates to adapt the controller parameters. Many of the indirect

adaptive control schemes are based on the certainty equivalence approach, i.e. the

uncertainty of estimated parameters is not taken into account during the controller design

so the parameter estimates are used by the controller as if they were the true values.

Adaptive dual control methods have been proposed looking for optimal adaptive control

techniques that consider uncertainties in the parameter estimations [30, 31]. A dual

adaptive control system should satisfy two properties: the control signal ensures that the

output cautiously tracks the desired reference value, and it excites the plant sufficiently to

accelerate the parameter estimation to improve the performance of the controller [30, 31].

A survey of adaptive flight control can be found in [32]. Neural networks have been

applied successfully to adaptive nonlinear flight control for a variety of aircraft [33-36].

10

For the specific case of UAVs some adaptive control methodologies have been

developed. For instance, in [37] a structured adaptive model inversion approach is used,

in which kinematical nonlinearities are incorporated so the only uncertainties considered

are the ones from the aerodynamic and propulsive forces. Some schemes for nonlinear

adaptive control of UAVs based on neural networks can be found in the literature. For

instance, in [38] a neural network control for an unmanned helicopter based on

approximate model inversion and feedback linearization is proposed, but it lacks a

rigorous proof of stability. A rigorous approach to the nonlinear adaptive control for a

UAV using neural networks is presented in [39, 40]. This approach is based on a multi

loop structure (inner loop for attitude stabilization, and outer loop for trajectory tracking),

where each loop uses approximate dynamic inversion plus a neural net for feedback

linearization compensating for the imperfect inversion. The neural net weights are

adapted online to minimize the tracking error. To avoid the effects of saturation in the

adaptation a technique called pseudo control hedging is used [41, 42]. Rigorous proofs of

stability based on Lyapunov theory are given.

The use of multiple models have been proposed in the literature as a way to

improve the performance of adaptive control systems especially when large changes in

the parameters or the environment happen [43]. Similar techniques have been used in the

context of failure accommodation and fault tolerant flight control [44].

A type of multi-mode adaptive control called adaptive mode transition control

was first introduced by Rufus et al in [45-48]. In that approach the problem of

transitioning from a start mode to a goal mode and from a family of start modes to a

family of goal modes was considered. A (local) mode was defined to be a region of the

11

state space in which the system exhibits steady state behavior. Furthermore, a tool was

developed to assess the robustness of these mode transition controllers. A systematic

procedure for designing off line the mode transition controllers and an online adaptation

scheme were developed. The method of blending local mode controllers (BLMC) was the

basis for this mode transition control scheme. Even though some good results were

presented on simulation for the control of a helicopter from hover to forward flight,

several problems have been detected which makes some aspects of the original

methodology impractical for implementation in an actual UAV:

• In that methodology there were some so called “desired transition models” that

were trained off line to model the trajectories followed during the transitions. In

practice it is impossible to know in advance all the possible maneuvers that are

going to be performed by a vehicle so it would require a huge amount of memory

to store so many models. Also there would be a lot of computation time required

for the generation of the transition trajectories and training of the fuzzy neural

nets that implement them.

• A factor contributing to the necessity of having a lot of local modes for this

methodology is the fact that local controllers were regulators, i.e. they were

designed to keep the vehicle in some predefined operating point. In an actual

UAV there may be too many operating points corresponding to the trajectories

required for all its maneuvers.

• Another weakness detected in the original methodology is in the stability of the

adaptation scheme. The control adaptation algorithm was designed based on a one

step ahead optimal control value computed using a weighted least squares

12

method. That method uses the sensitivity control matrix obtained from the active

plant model. On the computation of the optimal one step ahead control value no

soft or hard constraints were imposed to the control signal. This produces control

signals that are excessively aggressive generating instability. In fact, a simulation

of this control scheme applied to a complete model of a rotorcraft UAV showed

that the closed loop system becomes unstable. It is important to note that in the

results presented in [45-48] no simulations were performed using the complete

model of the vehicle. In fact, for the design and simulation in the transitions, just a

reduced set of the state variables were considered, which could result in poor

robustness of the control scheme.

• The algorithms of the original adaptive mode transition control methodology used

fuzzy neural networks on the active control models, active plant models, and the

desired transition models. The adaptation algorithms used for the fuzzy neural

network in the original methodology were based on: a structure learning method

to generate new input membership functions and also parameter learning methods

based on offline least squares for the consequent weights and an on line gradient

descent scheme for input membership function parameters and consequent

weights. The only method used for online adaptation was the gradient descent

scheme. For such a scheme it is difficult to find a good set of adaptation gains

ensuring fast adaptation without incurring instability.

Model predictive control, sometimes called receding horizon control, is a control

technique in which the control input is obtained from solving an optimal control problem

over a usually finite time horizon. Only the control computed at the actual time is used

13

and then the optimization problem is solved again. This optimization predicts the future

behavior of the system based on its model; this explains the name of the technique. Most

applications of these techniques are employed in slow industrial process control [49]

given its computational intensity. The methodology has been applied to linear systems

and also to nonlinear systems and naturally involves constraints in control inputs, outputs

and states [50]. Fuzzy model predictive control schemes combining fuzzy models with

the model predictive control scheme for control of nonlinear systems have been also

reported in the literature [51]. Neural networks have also been used to provide the

nonlinear models required in the model predictive control scheme [52]. In [53] a

nonlinear model predictive control (NMPTC) scheme for a UAV was formulated. The

NMPTC algorithm also allowed for planning of paths with input and state constraints

while tracking the generated position and heading trajectories.

Other techniques that have been applied to the control of UAVs are: in [54] a

controller that takes into account the constraints on the control amplitude and the control

rate for trajectory tracking of a vertical take off and landing UAV (VTOL-UAV) is

presented, in that approach a sequential quadratic programming (SQP) algorithm

computes a feasible reference as close as possible to the desired reference that ensures the

control does not induce constraint violations; in [55] an autopilot for a fixed wing UAV

was developed based on approximate discrete feedback linearization and disturbance

accommodation control, the discrete nonlinear model used in this approach was obtained

using the Adams-Bashforth method, the disturbance accommodation part was used to

compensate for model errors and rejection of external disturbances.

14

The challenges appearing in UAVs and also in other complex system applications

have led to the development of new software enabled control technologies [56-58]. One

of the challenges for advanced control algorithms actually being developed for UAVs is

that they are usually implemented on a variety of hardware/software platforms making

their integration more difficult. Moreover, higher level algorithms and their integration

with middle and low level routines is quite demanding, requiring tools that facilitate the

implementation of hybrid and multirate systems that can be distributed to several

platforms with guaranteed quality of service constraints. To face this challenge a new

open software infrastructure especially developed for the implementation of complex

reconfigurable control systems for UAVs was developed: the Open Control Platform

(OCP) [59-63]. The OCP is a middleware-enabled software framework and development

platform for the implementation of advanced embedded control systems especially

targeted for UAVs. The OCP allows the implementation of hierarchical control systems

including low level, middle level and high level controls permitting the interoperability of

different control platforms (in several UAVs, control stations, etc.). Some of the OCP

characteristics are support for hard and soft real time algorithms, innovative scheduling

techniques, adaptive resource management, and support for dynamic reconfiguration.

An architecture for robust motion planning of autonomous vehicles is presented in

[64], where a robust hybrid automaton is used to solve the motion planning problem for a

nonlinear, high dimensional system. That work relates to the one presented in this thesis

in the sense that a quantization of the state space is performed to reduce the

computational complexity of the problem. There is an analogy between the trim

trajectories and maneuvers of that work and the local modes and transitions of this work.

15

CHAPTER 3

FUZZY NEURAL NETWORKS

3.1 Fuzzy Neural Network Structure

In this research, fuzzy neural networks (FNN) are used to approximate nonlinear

functions representing unknown nonlinear mappings in some cases and models for

nonlinear dynamic plants in others. Specifically, a FNN is used as a nonlinear function

approximation system for the implementation of active control model and active plant

model components of the adaptive mode transition control scheme described in Chapter

5. The FNN is the core adaptive element used in those components.

The FNN constructs are neural-network-based connectionist models that

implement the functions of a fuzzy logic system [65]. The FNN comprises a set of

Takagi-Sugeno IF-THEN fuzzy rules whose consequents are affine mappings of the input

vector. The structure of the FNN is divided into three major parts as shown in Figure 2:

the premise part, the consequent part, and the defuzzification part.

The mapping generated by the FNN can be expressed as

�

�

=

== N

k
k

N

j
jj

x

xMx
y

1

1

)(

)(

µ

µ
 , (1)

where x is the augmented input vector and y is the output vector for the FNN so

[]
[] ,

, 1

21

1
T

n

T
m

yyyy

xxx

�

�

=

=

16

jµ is the jth input membership function for premise of rule j, and Mj is a matrix

representing the linear mapping for the consequent part of rule j (j=1,2,…,N).

Input membership functions are Gaussian functions of the form

2
)()(

)(
xzxz

j

j
T
j

ex
−

=µ , (2)

where)()(jjj mxxz −= ρ ,

and),,,,0(21 jmjjj diag γγγρ �= .

jm is the center of input membership function j and jiγ parameters represent the inverse

of the usual deviations for the input membership functions. The reason for using a

representation based on the inverse of the deviations is that allowing a value of zero for

any jiγ , implies allowing an infinite deviation. This would permit representing a linear

mapping with respect to the associated input. This was not possible with the

representation used in [45-48] that had an upper limit for the deviations.

The main reasons for choosing a Fuzzy Neural Network instead of a Feed forward

Neural Network for the approximation and identification problem are:

• It allows for structure learning, so its structure is suited to the actual input space.

Thanks to this feature, the FNN is computationally more efficient since only the

required input membership functions and fuzzy rules are created.

• There is no need for random initialization of any parameters as usual for other

neural network schemes. The structure learning mechanism initializes all the

parameters automatically based on provided input/output information. That way

the FNN can generate a good approximation of the desired input/output mapping

even without extensive parameter learning.

17

Figure 2. Fuzzy Neural Network Structure

Σ

÷

Π

Π

Σ

Π

1

Σ

Σ

Π

��

�

�

�

�

�

�

Inputs Premise Part

Defuzzification Part

Consequent Part

1µ

Nµ

kf1

k
Nf

k
NN fµ

kf11µ

�
=

N

v

k
vv f

1
µ

�
=

N

v
v

1
µ

1x

mx
ky

18

• It is adaptive thanks to its parameter learning mechanisms allowing the

implementation of the adaptation mechanisms described later in section 5.3.2.

• It implements a smooth differentiable mapping permitting the easy computation

of a linear incremental approximation at any operating point. This feature is

exploited in the adaptive mode transition control scheme to compute a linearized

model of the UAV based on the FNN of the active plant model corresponding to a

transition, as it will be discussed in section 3.3.

The structure learning algorithm for the FNN used in this work is taken from [48,

65]. This algorithm generates the parameters for input membership functions jµ creating

new rules whenever the excitation level of all existing membership functions for a given

input is below a prescribed threshold. When that happens, a new rule is added with center

in the input value and deviations chosen such that the new membership function exhibits

a prescribed degree of overlapping with the closest membership function (the most

excited one from existing input membership functions). The consequent matrix of the

new rule is set so the output of the FNN matches the corresponding desired output. That

way, the FNN structure is suited to the input space for the application at hand, and the

number of required rules is minimized improving the computational efficiency.

In [65] a gradient descent method based on back propagation is used for

parameter learning, tuning input membership parameters and also consequent parameters.

In [48] the back propagation method is used for training the FNN on-line, and a least

squares method is also used to train consequent parameters off-line. The gradient descent

method requires just local error information at each iteration. If learning gains are not

appropriately chosen, then it could become very slow (for small values) or unstable (for

19

large values). This makes it difficult to find a good set of learning parameters and does

not guarantee convergence in all situations for a set of parameters. Even with a good set

of learning parameters this method tends to be slow. The least squares method as

presented in [48] requires not just local but a large set of input/output data to generate a

good approximation. However, it avoids learning instability and guarantees minimal

square error with respect to the training set.

For the reasons given above it was decided not to use the back propagation

method for on-line training of the FNNs used in this work. Instead, a recursive least

squares method was developed for off-line initialization and on-line training of the

consequent parts of rules. Structure learning was used for off-line initialization and on-

line generation of new rules. Once the rules were created, the input membership function

parameters were left untouched.

3.2 Development of a Recursive Least Squares Learning
Algorithm for Fuzzy Neural Networks

A new recursive least squares learning methodology has been developed here for

the FNN based on [66], so just local information is used at each iteration. The idea behind

this methodology is that at each iteration the parameters are updated so they minimize the

total square error with respect to all the data including old data and the new data

presented in that iteration. A detailed description of this method follows.

Let us assume there is a training data set of input/output pairs),(d

ii yx for

i=1,2,…,M, where d

iy is the desired output vector and let iy be the FNN output vector

corresponding to input vector ix .

20

Assume we look for an update of matrix pM , so all the matrices jM are kept

constant except for pM . Hence, we look for a new matrix *

pM such that the square error

between iy and d

iy is minimized on average over all the training set (i=1,2,…,M).

The output, iy , can be written

�

�

�
=

≠
=

=

+= N

k
ik

N

pj
j

ijij

N

k
ik

ipip
i

x

xMx

x

xMx
y

1

1

1

)(

)(

)(

)(

µ

µ

µ

µ
 ,

and

��

�

�
==

≠
=

=

∆
+=+= N

k
ik

ipip

iN

k
ik

N

pj
j

ijij

N

k
ik

ipip

i

x

xMx
y

x

xMx

x

xMx
y

11

1

1

*

*

)(

)(

)(

)(

)(

)(

µ

µ

µ

µ

µ

µ
 ,

where *

iy represents the output vector obtained after replacing pM by *

pM and

ppp MMM −=∆ * . It is required to find *

pM , and therefore pM∆ , that minimizes

2

21

2

21

*

2
1

2
1

��
==

∆−−=−=
M

i
ippii

d

i

M

i
i

d

i xMyyyyJ µ , (3)

with
�

=

= N

k
ik

ip

pi

x

x

1

)(

)(

µ

µ
µ for i=1,2,…,M.

The input, output, and desired output vectors from the training data set can be

stacked together to form the matrices X, Y, and dY so

[]
[]
[] .

and ,

,

21

21

21

Td
M

ddd

T
M

T
M

yyyY

yyyY

xxxX

�

�

�

=

=

=

Thus, J can be rewritten as

21

[] []()T
p

dTT
p

d MQXYYMQXYYtraceJ ∆−−∆−−=
2
1 , (4)

with),...,,(21 pMppdiagQ µµµ= .

Setting 0=
∆∂
∂

pM
J to find pM∆ that minimizes J,

[] 0=∆−−−=
∆∂
∂ QXMQXYY
M
J TT

p

d

p

.

Solving for pM∆ ,

[] 12)(−−=∆ XQXQXYYM TTd

p . (5)

The value of pM∆ is kept in a separate variable because it is required for the

recursive part of the algorithm, so instead of equation (1) further evaluations of the fuzzy

neural net use the following equation

�

�

=

=

∆+
= N

k
k

N

j
jjj

x

xMMx
y

1

1

)(

))((

µ

µ
 . (6)

Now assume there is some new data stacked in matrices newX , newY , and d

newY ,

similar to the data contained in X, Y, and dY .

Equation (5) can be rewritten as

[] QXYYXQXM TdT

p −=∆)(2 . (7)

To compute the new value of pM∆ , ppnewp MMM δ+∆=∆ , , considering new and

old data, the following replacements need to be made in (7):

pM∆ by ppnewp MMM δ+∆=∆ , ,

22

X by �
�

�
�
�

�

newX
X

 ,

Q by �
�

�
�
�

�

newQ
Q
0

0
 ,

Y by �
�

�
�
�

�

newY
Y

 , and

dY by �
�

�
�
�

�
d

new

d

Y
Y

 .

Therefore,

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

	

�

�
�
�

�
�
�

�
−�

�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
+∆

newnew

T

new
d

new

d

newnew

T

new
pp X

X
Q

Q
Y
Y

Y
Y

X
X

Q
Q

X
X

MM
0

0
0

0
)(2

2

δ . (8)

Using (7) and solving for pMδ ,

[] () 122 −+∆−−= newnew
T
new

T
newnew

TT
pnewnewnew

d
newp XQXXQXXQMXQYYMδ . (9)

Notice that the information required from old data in equation (9) is given by

matrices XQX T 2 and pM∆ , which can be updated and stored each iteration. A problem

with (9) is that the matrix XQX T 2 will increase without bound and new data will have

less relative importance in the least squares minimization problem given that the amount

of data available increases. To avoid this problem, an improvement can be made to (9) to

include a forgetting factor for old data. That is, assume that old data represented by the

matrices X , Y , and dY are weighted by a forgetting factor γ in (3). This will lead to the

following modification in (9),

[] () 122 −+∆−−= newnew
T
new

T
newnew

TT
pnewnewnew

d
newp XQXXQXXQMXQYYM γδ . (10)

23

Notice that in (10) the effect of the matrix XQX T 2 will be bounded by the proper

choice of the forgetting factor γ , with 1<γ . After computing pMδ from (10), pM∆ and

XQX T 2 are updated so ppp MMM δ+∆←∆ , and newnew
T
new

TT XQXXQXXQX 222 +← γ .

In summary, the recursive least squares learning algorithm is applied as follows

• All the rules are initialized for the FNN using structure learning, as described in

[48, 65]. From this initialization each rule has an initial matrix pM .

• Based on an initial training set the least squares method is applied to compute

correction matrices pM∆ using equation (5). The input/output data are pre-

classified based on the values of the membership functions piµ before they are

used by the least squares algorithm, i.e. an input/output pair),(d

ii yx is considered

for training of rule p only if trhesholdpi µµ > , where thresholdµ is a threshold value for the

membership function values (usually 0.5). Then use equation (6) instead of

equation (1) for further evaluations of the fuzzy neural net output.

• Apply the recursive least squares method to compute correction matrices pMδ

corresponding to the new input/output pair),(d

ii yx using equation (10). This

correction is applied to rules for which trhesholdpi µµ > . Let ppp MMM δ+∆←∆ and

new
T
new

TT XQXXQXXQX 222 +← γ for p=1,…,N. These values are stored and

used for pM∆ and XQX T 2 the next iteration.

• Repeat last step as required.

24

3.3 Learning Based on Adjustment of Output Values

In some situations it may be required to adjust FNN parameters so that the output

given a certain input matches a prescribed value without interfering with the learning

algorithms already described. These situations may arise when it is needed that the FNN

learn a high confidence value. Instead of waiting for many iterations of back propagation

or least squares learning for the FNN to learn this value, it is possible to adjust directly

consequent matrices of existing rules or perform structure learning to learn the value in

one iteration. It is important to reiterate that this learning method can only be applied

when there is high confidence in the training data. The motivation this method was one of

the new algorithms developed for the adaptive mode transition control called automatic

trimming, discussed later in Chapter 5.

Let us assume the FNN needs to be adjusted so a high confidence input/output

pair),(d

ii yx is represented, i.e. when presented with input vector ix , the output will be

exactly d
iy with minimal modification of the outputs produced by inputs far enough from

in the input space. Two situations are possible:

• The FNN is not sufficiently excited by input vector ix , i.e. all current input

membership functions evaluated in ix are below the threshold specified for

structure learning. In this case just perform structure learning using the input

output pair),(d

ii yx , a new rule will be created and the output will match d
iy for

input ix .

• The FNN is sufficiently excited by input ix . In this case adjust consequent

parameters of current rules as described in the sequel.

25

Let iy be the output produced by the FNN when presented with input ix ,

i
d
ii yyy −=∆ be the correction required in iy and jM∆ be the corrections required in the

consequent parameters jM such that the new output of the FNN matches d
iy . Hence,

using equation (1) the following expression is obtained

�

�

=

=

∆
=∆ N

k
ik

N

j
ijij

i

x

xMx
y

1

1

)(

)(

µ

µ
. (11)

The problem here is finding suitable values of parameters jM∆ satisfying

equation (11). Let ijji xMy ∆=∆ , so (11) can be rewritten as

��
==

∆=∆
N

j
jiiji

N

k
ik yxyx

11

)()(µµ . (12)

 Now choose

iiijji yxaxy ∆=∆)()(µ , (13)

where)(ixa is a function to be determined. This pick is arbitrary, but it makes sense

since it means that the output correction of the consequent of each rule is proportional to

the level of excitation of that rule, represented by the input membership function value

)(ij xµ .

From equations (12) and (13) it follows that

�

�

=

== N

k
ik

N

k
ik

i

x

x
xa

1

2

1

)(

)(
)(

µ

µ
,

hence,

26

iN

k
ik

N

k
ik

ijji y
x

x
xy ∆=∆
�

�

=

=

1

2

1

)(

)(
)(

µ

µ
µ (14)

Equation (14) gives the correction required in the consequent output of rule j. To

achieve this, a suitable correction in the consequent parameter of rule j will be

[]OyM jij �∆=∆ (15)

After evaluating equations (14) and (15) for each Nj ,...,1= , consequent

parameters are adjusted so jjj MMM ∆+← .

27

CHAPTER 4

ACTIVE MODELING FRAMEWORK

The active plant models are key components of the adaptive mode transition

control architecture that will be presented in Chapter 5. These models represent the

nonlinear dynamics of the plant under control and are adapted on-line to changes in those

dynamics. This chapter is devoted to explain how these models represent the dynamics of

the plant, how to incorporate known nonlinearities in the models for the case of vehicles

in 3D space, and how incremental models are obtained from them to enable the control

adaptation that will be discussed in Chapter 5.

4.1 Active Plant Models for a Nonlinear Discrete Time System

Consider a continuous time nonlinear system represented by the state equation

))(),(()(tutxftx cccc =� , with initial condition 0)0(xxc = . (16)

)(txc is the continuous time state vector,)(tuc is the continuous time input

vector, and cf is a nonlinear function representing the nonlinear dynamics of the system.

Given that a digital controller is going to be used to control this system, an equivalent

discrete time model representation will be more appropriate for control design purposes.

The discrete time version of the model, so called discretized model, can be represented by

(1) ((), ())x k f x k u k+ = , with 0(0)x x= , (17)

where)(kx and)(ku are discrete time versions of)(tx and)(tu given by

28

)()(
)()(

kTuku
kTxkx

c

c

=
=

with sample period T, and f is a nonlinear function representing the discrete time version

of the dynamics of the system. It is assumed that the sample period is chosen small

enough to be able to capture the continuous dynamics in (16).

In this research, the model of the plant is discretized like in equation (17), with

function f approximated by a FNN. The FNN construct enables adaptation in the model,

so the model can be trained off-line and adapted on-line through the structure and

parameter learning algorithms discussed in Chapter 3. In the adaptive mode transition

control scheme presented in Chapter 5, the state space is partitioned in local modes and

transition regions. That is the reason why instead of using a single FNN, several FNNs

are used to represent the dynamics of the plant across the whole operating region of the

system. The FNN representing the dynamics of the system in one of the regions is what is

named an active plant model. Therefore, assuming there is a mechanism to determine the

region of operation of the plant at each sample time, only the plant model corresponding

to that region will be active at that instant. This multi model approach improves the

computational efficiency of the overall model since each FNN has a smaller structure.

According to the discussion above, the active plant model l is represented by

))(),(()1(kukxFNNkx
lAPM=+ , with 0(0)x x= , (18)

where
lAPMFNN is the function representing the nonlinear mapping generated by the

FNN associated to that model.

29

4.2 Incorporation of Known Nonlinearities in Active Plant
Models for Vehicles in 3D Space

In some situations exact knowledge about some nonlinearities in the model of the

plant under control exists. Whenever possible, it is a good idea to incorporate that

knowledge into the active plant models to reduce the size of associated FNNs and speed

up their learning. This happens for instance in the case of vehicles in 3D space where

there is exact knowledge of vehicle kinematics.

For the Unmanned Aerial Vehicle considered in this work, the state vector was

chosen as

Tzyxzyxkx],,,,,,,,,,,,[)(Ω= ψθφψθφ ������ , (19)

where Tzyx],,[represent the position in earth frame, Tzyx],,[��� is the velocity, T],,[ψθφ

is the attitude in term of Euler angles, T],,[ψθφ ��� are the Euler angle rates, and Ω

represents the angular velocity of the main rotor. The reason for choosing the state

variables this way is that there is a linear relationship between the variables representing

position and velocity, i.e. the later is just the derivative of the former, facilitating the

model linearization.

From a modeling point of view, the best choice for the state variables should

involve the velocity in body frame TWVU],,[and the angular rates TRQP],,[.

Therefore, given that the nonlinear relationships between these variables and the ones

included in the state are exactly known, the active plant models use the variables in body

frame. The gravity effect was also considered separately since it is almost exactly known.

Hence, FNNs in the active plant models were used to approximate aerodynamic and

30

propulsive forces in the vehicle representing the most uncertain part in the model of the

vehicle.

According to the discussion above, the active plant models approximate the model

of the vehicle as

))(),(),(),(())(),(()1(kukxkkFNNkkgkx BACMBB l
θφθφ +=+ , (20)

where],,,,,,[)(Ω= RQPWVUkxB includes the velocity in body frame, the angular rates,

and the angular velocity of the main rotor at instant k,)(kφ and)(kθ are roll and pitch

angles at instant k, and],,,,[)(pmrmpctku δδδδδ= is the control input to the vehicle at

instant k. The known gravity effect in body frame is given by

T
B TgTgTgg]0,0,0,0),cos()cos(),cos()sin(),sin([),(θφθφθθφ −= , (21)

where g is the acceleration of gravity and T is the sample period. In (20) dependencies on

the position were dropped given that for a UAV flying at low altitude the variation of the

model with altitude is minimal. Dependency on the heading angle ψ was also dropped

using always a reference frame rotated about the z axis such that ψ is always zero

respect to that frame.

4.3 Computation of Incremental Models from Active Plant
Models

For a plant represented by equation (17), it is possible to find an incremental (or

linearized) model about the operating conditions),(** ux such that

),())(())(())(),(()1(**** uxfukuxkxkukxfkx +−Γ+−Φ≈=+ , (22)

where

31

**,)(
))(),((

uxkx
kukxf

∂
∂=Φ , (23a)

** ,)(
))(),((

uxku
kukxf

∂
∂=Γ . (23b)

If the system is modeled by active plant models following equation (18), then the

incremental model can be approximated by

),())(())(()1(**** uxFNNukuxkxkx
lAPM+−Γ+−Φ≈+ , (24)

with

** ,
)(

))(),((

ux

APM

kx
kukxFNN

l

∂
∂

=Φ , (25a)

** ,
)(

))(),((

ux

APM

ku
kukxFNN

l

∂
∂

=Γ , (25b)

given that active plant model l is active.

For the Unmanned Aerial Vehicle considered in this work, given that the state

vector was chosen according to (19) and the active plant models follow equation (20),

computing the incremental models require a small amount of work. Define

),,,(),(),,,(uxFNNguxf BACMBBB l
θφθφθφ +≡ , (26)

and let

T
h zyxx],,,,,,[Ω= ψθφ ������ ,

there exist transformation matrices hBT and BhT such that

.
,

hBhB

BhBh

xTx
xTx

=
=

(27)

From (20), (26), and (27) the following is obtained

32

))(),(),(),(()1(kukxTkkfTkx hBhBhBh θφ=+ . (28)

Notice that)(kxh is the lower part of the state vector)(kx , so equation (28)

captures the nonlinear dynamics represented by the active plant models, according to

equation (20), transformed in terms of the state vector)(kx .

Let us define

)(
))(),(),(),((

kx
kukxTkkfT hBhBhB

h ∂
∂=Φ θφ ,

)(
))(),(),(),((

ku
kukxTkkfT hBhBhB

h ∂
∂=Γ θφ .

Then the incremental model for the vehicle can be represented by

***))(())(()1(fukuxkxkx +−Γ+−Φ=+ , (29)

with

,
0

 ,
�
�
�

�

�

�
�
�

�

�

Γ
=Γ

�
�
�

�

�

�
�
�

�

�

Φ
=Φ

hh

M
�� (30a)

and

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

+
+
+
+
+
+

=

),,,(****

*

*

*

*

*

*

*

uxTfT

T
T
T

zTz
yTy
xTx

f

hBhBhB θφ

ψψ
θθ
φφ

�

�

�

�

�

�

�

, (30b)

where M represents the integrators for the linear part of the model (relationship between

Tzyx],,,,,[ψθφ and its derivative Tzyx],,,,,[ψθφ ������), that is

33

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

000000100000
000000010000
000000001000
000000000100
000000000010
000000000001

T
T

T
T

T
T

M .

34

CHAPTER 5

OVERALL ARCHITECTURE FOR CONTROL OF
UNMANNED AERIAL VEHICLES

In this chapter a new approach to the adaptive mode transition control problem

and a hierarchical architecture to implement it are presented. The architecture is flexible

enough to enable the future integration of additional intelligent attributes at the high

level, for instance the introduction of a situation awareness module and collision

avoidance algorithms.

The proposed architecture for control of UAVs consists of a hierarchy of three

levels (Figure 3). At the highest level, a mission planning component stores information

about the overall mission, generates a low level representation of that mission, and

coordinates its execution with the middle level. The middle level includes a trajectory

generation component, which receives information from the high level in terms of the

next task to be executed to fulfill the mission, and generates the trajectory (set points) for

the low-level controller. At the lowest level, an adaptive mode transition controller

coordinates the execution of the local controllers and the active control models, which

stabilize the vehicle and minimize the errors between the set points generated by the

middle level and the actual state of the vehicle. A more detailed description of each level

as applied to the case of a rotary wing UAV is given below.

35

Figure 3. Overall Architecture for the Adaptive Mode Transition Control

Mission Planning

High Level

Middle Level

Low Level

Trajectory Generation

Mode Transition Controller Adaptation Mechanism

Set Points

UAV StateActuator Commands

Task Info Task Completed

Mission

UAV

36

5.1 High level: Mission Planning

The mission planning component translates a high level representation of the

mission into a low-level task queue and coordinates the execution of low-level tasks with

the trajectory generation component at the middle level. The mission can be established

as a sequence of actions to be executed, for instance: fly to a way point and hover there,

fly to a way point at certain speed, keep the same velocity and heading for a certain

period of time, etc. Kinematical constraints like maximum speed and acceleration are

specified and can be changed for each section of the mission.

Every action is specified through a high level command given to the mission

planning module. When a new action is suggested, the sequence of tasks that must be

performed are generated and added to the tail end of the task queue. Each task represents

a maneuver that takes the vehicle from the actual state to a target state and includes the

following information:

• Time to complete the task

• Target position

• Target direction of the flight path for this task

• Target heading angle

• Heading mode: specifies whether the value of the heading is absolute or relative

to the direction of the flight path for coordinated flight

• Target speed

• Maximum acceleration

A mission may be completely specified before it is executed but may also be

modified, re-planned, or expanded at run time. This feature enables the modification or

37

extension of the mission at run time. Re-planning is particularly important for the future

incorporation of obstacle and collision avoidance algorithms. The functionality of the

mission planning component is illustrated in Figure 4.

Figure 4. Mission Planning Component Functionality

At run time, the mission planning component coordinates the execution of the

low-level tasks with the trajectory generation component at the middle level in the

following way: first, the mission planning component takes the task at the head of the

task queue, removes it from the queue and sends the task information to the trajectory

generation component. Then, the trajectory generation component executes the task and,

Mission Planning

High Level

Middle Level
Trajectory Generation

Set Points UAV State

Task Info Task Completed

Mission

Mission
Task 1

Task 2

Task 3

Task n

�

Task Queue

Task Information
Coordination

logic
Task

Completed

38

when completed, sends a signal back to the mission planning component indicating that

the last task has been completed. Finally, when the mission planning component receives

the signal, it sends the task at the head of the task queue and the cycle is repeated until no

tasks remain in the task queue.

5.2 Middle Level: Trajectory Generation

The trajectory generation component generates the set points required for the low-

level controllers to complete the most recent task received from the mission planning

module. When the trajectory generation component receives the next task information, it

computes a 3D spline to generate a continuous path linking the actual position with the

target position (Figure 5). At each sample time, the actual speed is evaluated based on the

initial speed for the task, the final speed for the task, and the maximum acceleration

available according to the curvature of the path at that time. Position and velocity over

the path are computed next using the spline representation. A similar spline is used for

the heading of the vehicle and is used according to the heading mode. The heading can be

determined in two different ways according to the heading mode defined for the task:

either directly from the heading spline if the heading mode is set to the absolute heading,

or from a combination of the heading spline and the heading computed from the direction

of the path, if the heading mode is set to coordinated heading. Also the heading rate is

computed in a consistent manner.

After generating the set points corresponding to the actual sample time, a

comparison is made with the actual state of the vehicle to determine if the task was

completed successfully or not. A signal is sent to the high level module indicating the

39

termination status of the task so that the next one can be initiated. For instance, when the

mission planning component at the high level receives a signal of successful termination

of the task, it retrieves the next task information from the task queue and sends it to the

trajectory generation component at the middle level, so the trajectory generation

continues smoothly. When the trajectory generation component completes a task and

does not receive a new task to perform from the mission planning component, it

generates set points consistent with the last set point, i.e. it maintains the same speed,

path direction and heading, and computes the positions accordingly. The functionality of

the trajectory generation component is illustrated in Figure 5.

Figure 5. Trajectory Generation Component Functionality

Mission Planning

High Level

Middle Level

Trajectory Generation

Set Points UAV State

Task Info Task Completed

Mission

Task Information

Set Point

Spline
Coordination

logic

UAV state

Task Completed

40

5.3 Low Level: Adaptive Mode Transition Control

The purpose of the low level controllers is to stabilize the vehicle and force it to

follow accurately the commanded trajectory generated by the middle level. In this

architecture, a new approach to the adaptive mode transition control is introduced. The

adaptive mode transition control consists of the mode transition control component and

the adaptation mechanism component (Figure 6). The following description refers to the

case of a rotary wing UAV.

Figure 6. Structure of the Adaptive Mode Transition Control

Mode Transition
Controller

Adaptation Mechanism

Set Points
From Middle Level

UAV State Actuator Commands

Mode Transition
Manager

Local Controllers

Active Control
Models

C2

C1

ACM1

APM1

PAM

CAM

�

�

Active Plant
Models

41

5.3.1 Mode Transition Control Component

The mode transition control component consists of several subcomponents

(Figure 7): a set point filter, a state filter, a set of local controllers (one for each local

mode), a set of active control models (one for each transition), the mode transition

manager, the automatic trimming mechanism, and a dynamic compensation filter. The

mode transition manager decides which controller to use at a given time (a local

controller or an active control model) based on the actual state of the UAV. The mode

transition control by itself does not perform any adaptation on local controller gains nor

in the blending gains of active control models; however, it tunes the trim values of local

controllers using a new automatic trimming mechanism described later.

Figure 7. Mode Transition Controller

Set Points
From Middle Level

Mode Transition
Controller

UAV State Actuator Commands

Mode Transition
Manager

Local Controllers

Active Control
Models

C2

C1

ACM1

�

�

Automatic Trim
Mechanism

Set Point Filter

State Filter

From CAM

Dynamic
Compensation

Filter

42

5.3.1.1 The Set Point Filter

This new component was introduced to guarantee acceleration and velocity

constraints and also sufficient smoothness and consistency in the set points used by local

controllers. The set point filter is composed of the series of two filters as shown in Figure

8. First, a limiting filter guarantees consistency in position and velocity set points and

enforces acceleration and velocity limits. Second, a smoothing filter smoothes the set

points, keeping the consistency between positions and velocities.

To illustrate the processing performed by these filters, let us consider the position

and velocity in x-axis, x and x� respectively. The same applies to the pairs),(yy � ,),(zz � ,

),(φφ � ,),(θθ � , and),(ψψ � .

Figure 8. Set Point Filter

The limiting filter is composed of an inner loop and an outer loop as seen in

Figure 9. The inner loop, fed with the desired velocity dx� , is simply a first order low pass

filter with cutoff frequency cw , which includes saturation before and after the integrator

Set Points
From Middle Level

Set Point Filter

Limiting Filter Smoothing Filter

Filtered Set Points
To Local Controllers

43

to guarantee limits in the acceleration and velocity respectively. The outer loop feeds the

error in position multiplied by a gain G to the inner loop and uses an integrator to

generate a consistent position set point. Assuming there is no saturation, the transfer

function of the limiting filter is

cc

c
l Gwsws

GwsH
++

= 2)(. (31)

Therefore, to achieve an equivalent damping factor ζ , the gain G is chosen as

24ζ
cwG = , (32)

and the resulting cutoff frequency of the limiting filter is
ζ2
cw . When there is saturation

given that one or both limits are hit, the set point filter will try to reach the desired

position dx as fast as possible, but respecting maximum acceleration and velocity limits.

Figure 9. Limiting Filter

Limiting Filter
Filtered Set Points

To Smoothing Filter

� �G ++

_ _

Inner Loop

Max Acc Max Vel

Set Points
From Middle Level

dx�

dx
dx

dx�

wc

44

The smoothing filter is chosen as a fourth order low pass Butterworth filter with

transfer function

01
2

2
3

3
4

0)(
asasasas

asH s ++++
= . (33)

The cutoff frequency for this filter is chosen as the same cw used in the limiting

filter. Given that this is an all pole filter, the output results from a cascade of integrators

generating consistent values of velocity and acceleration, as shown in Figure 10.

Figure 10. Smoothing Filter

Smoothing Filter
Filtered Set Points

To Local Controllers

� �ao+

Set Points
From Limiting Filter

dx
dx

dx�

� �

-a1

-a2

-a3

_
+

45

Each integrator used in the filters presented here is discretized using the bilinear

transformation, equivalent to a trapezoidal integrator with a correction in the sample

period to avoid shifting of the cutoff frequency. The transfer function of each discretized

integrator is

1

1

1
1

2
)(−

−

−
+=

z
zTzH c

I , (34)

with

2

2
tan

c

c

c w

Tw

T
�
�

�
�
�

�

= , (35)

where T is the sample period.

5.3.1.2 The State Filter

The purpose of the state filter is to generate values of velocity and acceleration

consistent with the measurement of the state of the plant. These values are used by the

automatic trimming mechanism discussed later, but they are not used by the local

controllers since the lag generated could affect the stability of the control loop. The state

filter is a second order low pass Butterworth filter with transfer function

01
2

0)(
bsbs

bsHl ++
= . (36)

The state filter is shown in Figure 11. The cutoff frequency of this filter is set to

eliminate as much noise as possible from the state without significantly affecting the

estimate of the velocity and acceleration. Integrators in this filter are discretized in the

same way as it was discussed for the set point filter.

46

Figure 11. State Filter

5.3.1.3 Local Controllers

In this new approach, the local controllers are discrete linear quadratic trackers

running at a fixed sample rate. The control law for these controllers is given by

itrimi ukeKku ,)()(+= , (37)

where k represents the discrete time,)(ku is the actuator command vector,)(ke is the

error between the desired state (set point) generated by the trajectory generation

component and processed by the set point filter ()(kxd) and the actual state of the vehicle

obtained from on-board sensors ()(kx). The parameters for local controller i are the gain

matrix iK , and the trim value of the actuator command itrimu , . itrimu , is adjusted on-line by

the automatic trimming mechanism discussed latter.

The state of the vehicle is given by

State Filter
Filtered State Velocity

and Acceleration

ao+

Unfiltered State
Velocity

x� x�
� �

-a1

_

x��

+

47

Tzyxzyxkx],,,,,,,,,,,,[)(Ω= ψθφψθφ ������ ,

where

x : x-position (ft, measured northwards)

y : y-position (ft, measured eastwards)

z : z-position (ft, measured downwards)

φ : roll angle (rad)

θ : pitch angle (rad)

ψ : yaw angle (rad)

x� : x-velocity (ft/sec)

y� : y-velocity (ft/sec)

z� : z-velocity (ft/sec)

φ� : roll angle derivative (rad/sec)

θ� : pitch angle derivative (rad/sec)

ψ� : yaw angle derivative (rad/sec)

Ω : rotor angular velocity (rpm)

The actuator command vector is given by

T
pmrmpctku],,,,[)(δδδδδ= ,

where:

tδ : throttle

cδ : collective

mpδ : longitudinal cyclic (moment actuator for pitch)

mrδ : lateral cyclic (moment actuator for roll)

48

pδ : pedal (moment actuator for yaw)

A transformation is performed on)(kx and)(kxd before the control algorithms

are applied, to make them independent of the actual heading of the vehicle. That is, if

xψ is the actual value of the heading in)(kx , then the transformed values are obtained by

,)),(()(
,)),(()(

xdd

x

kxTkx
kxTkx

ψ
ψ

←
←

(38)

where

[]Txx zyxzyxkxT
xxxx

Ω−= ,,,,,,,,,,,,)),((ψθφψψθφψ ψψψψ ������ ,

with

�
�

�
�
�

�
=�

�

�
�
�

�

y
x

A
y
x

x
x

x)(ψ
ψ

ψ , �
�

�
�
�

�
=�

�

�
�
�

�

y
x

A
y
x

x
x

x

�

�

�

�

)(ψ
ψ

ψ , and

�
�

�
�
�

�

−
=

)cos()sin(
)sin()cos(

)(
xx

xx
xA

ψψ
ψψ

ψ .

After the transformation, the tracking error is given by

)()()(kxkxke d −= . (39)

To improve the tracking performance of the local controllers, they are augmented

with an integral part. Therefore, the dynamics of the system is augmented with

integrators for position, heading, and rotor angular velocity. This is equivalent to

designing the controllers for a system with state vector

Tzyxzyxzyxkx],,,,,,,,,,,,,,,,,[)(ΩΩ= ����� ψθφψθφψ ������ . (40)

The error in (39) is computed based on this augmented state vector. The structure

of the local controllers is presented in Figure 12.

49

Figure 12. Local Controllers Structure

The design procedure for the local controllers is as follows: once the operating

state of a local mode is decided, an approximate model of the vehicle is linearized about

that state, and then discretized. Based on the discrete linearized model, augmented with

the integrators discussed above, a linear quadratic regulator is computed for the gain

matrix iK . When an approximate model of the vehicle is not available, the linearized

model could be obtained from a Fuzzy Neural Net model trained with input/output data

from the actual vehicle in the same way it is done with the active plant models to be

discussed later.

5.3.1.4 Mode Transition Manager

The mode transition manager (MTM) coordinates the transitions in this new

approach. Unlike [45-48] where the transitions were pre-scheduled and a mode selector

module coordinated the transitions, the MTM coordinates the transitions automatically in

Transformation

Σ Ki Σ

UAV state

Set Point

Transformation

From Automatic
Trimming Local Controller i

)(ku

itrimu ,

50

the new technique based on the actual state of the vehicle. In order to accomplish this

task, a mode membership function is defined for each local mode and the MTM

determines which local mode or transition should be activated relying upon these

constructs.

For local mode i the mode membership function is defined as

)()(iiT
i

Ti mxmx

i e −ΣΣ−−=µ , (41)

where x is the state of the vehicle, mi is the center (operating state) of the mode, and iΣ is

a positive semi-definite diagonal matrix whose elements represent the inverse of the

deviations for each component of x for that mode.

To determine which mode is active, the MTM computes the mode membership

functions for all local modes. If (()) 0.5l x kµ ≥ for the current state, then local mode l will

be active. Mode centers and deviations are defined so that (()) 0.5l x kµ ≥ can be valid for

only one l. That way the modes correspond to disjoint regions of the state space. If

(()) 0.5l x kµ < for all l, then the transition corresponding to the two modes with the

highest mode membership function values will be active.

When a local mode is active, the corresponding local controller is used to

compute the control output whereas when a transition is active, the corresponding active

control model is used to compute the control output.

5.3.1.5 Active Control Models

The active control models are in charge of the transitions between local modes.

The function of an active control model (ACM) is to blend the outputs of the local

controllers corresponding to one transition in a smooth and stable way, that is, the

51

blending of the local controllers should not deteriorate the overall performance of the

closed loop system. Every ACM is linked to the local controllers corresponding to the

transition, has access to their outputs, and also includes a fuzzy neural net (FNN) that

generates the blending gains to compute the control output (Figure 13). The FNN has the

same structure as in [45-48], but its learning capabilities have been improved via the

recursive least squares learning algorithm discussed in Chapter 3. The FNN input is

composed of some of the variables of the actual state of the vehicle,)(kx , after the

transformation given in (38). Usually the variables included in the FNN input are the x

and y components of the velocity. Therefore, the output of the lth ACM module is

determined from

, 1

,))((

21

2

insblendingGainsblendingGa

kxFNNinsblendingGa
lACM

−=

=
(42)

)()()(21 kuinsblendingGakuinsblendingGaku ji += (43)

where
lACMFNN represents the function implemented by the FNN of the lth ACM,

blendingGains are the blending gains generated from that FNN, and)(kui and)(ku j

represent the control outputs of the local controllers corresponding to the lth ACM. The

new approach differs from the one presented in [45-48] in that it uses scalar blending

gains, while in [45-48] different blending gains are used for each component of u(k).

When a transition is set up, the FNN of the corresponding ACM is trained off-line

on the basis of an input/output data set generated automatically from a hypothetical

transition trajectory from the center of the initial mode to the center of the target mode.

The state is taken from this trajectory and the desired blending gains (desired outputs of

the FNN) are computed based on the mode membership functions generated by the

52

MTM. That is, given that the state of the vehicle is)(kx at some point over this

hypothetical trajectory, and iµ and jµ are the mode membership functions for the modes

involved in the transition from mode i to mode j, then the desired output for the FNN at

that point is

T

ji

j

ji

i

kxkx
kx

kxkx
kx

�
�
�

�

�
�
�

�

++))(())((
))((

))(())((
))((

µµ
µ

µµ
µ .

Figure 13. Active Control Models Structure

Thus, the computation of an optimal trajectory for the given transition is avoided

at this stage. This new approach assumes that the mode transition controller itself does

not determine the trajectory for the given transition since the trajectory generation

Local
Controller i

Local
Controller j

FNN

Σ

UAV State

Set Point

X

X

)(kui

)(ku j

)(ku1 Σ
+

+

_
+

Active Control Model k

From Automatic
Trimming

Mechanism

53

component specifies the trajectory at the middle level according to the tasks sent by the

mission planning component.

At run time, FNNs of ACMs are adapted on-line by the control adaptation

mechanism, as it is described in the sequel.

Once the local modes are defined and the local controllers are designed for each

local mode, the transitions are established via the ACMs in the mode transition control

component and the corresponding active plant models, which are incorporated into the

adaptation mechanism.

5.3.1.6 Automatic Trimming Mechanism

The trim values of local controllers are initialized based on an approximate model

of the vehicle. When the mode transition control is applied to the actual vehicle, these

imprecise trim values affect the controller tracking performance reflected in a position

and heading offset with respect to the desired values. This is the main reason why integral

control was introduced in the local controllers. However, given that the vehicle can

operate through different modes during a mission, and given that the trim values are

different for different modes due to the nonlinearity of the model, integral control does

not work as well as expected to compensate for the offset in the trim values unless the

vehicle is steady flight, i.e. flying at constant velocity. The automatic trimming

mechanism was established to allow the controller to memorize the trim values for all the

operating conditions in steady flight. For this purpose a FNN was added to the mode

transition controller and called auto-trim FNN. This FNN learns the trim values from the

integral control when the vehicle is in steady flight as will be explained in the sequel.

54

The auto-trim FNN has the same inputs used to distinguish the modes of

operation in the mode transition manager, i.e. forward and sideward velocities for the

UAV considered in this work. Training of the auto-trim FNN proceeds on-line as follows.

• Every sample time the values of desired and actual velocities and acceleration

obtained from the set point filter and the state filter are monitored. The condition

for auto-trim will be set as true whenever the values of acceleration and angular

velocities are under a prescribed threshold, and false otherwise. A counter

indicating the number of samples that the auto-trim condition is valid will be

incremented every sample that the auto-trim condition is true and reset whenever

that condition is false.

• When the counter reaches a prescribed number of samples meaning that the

vehicle is in steady flight, the value of the integral control at that time will be the

correction required to the trim value. The desired trim value is computed by

adding that correction (the integral control value) to the actual trim value

estimated from the local controller or the active control model when the vehicle is

in a transition region. Given that this desired trim value has a high confidence, the

auto-trim FNN is adjusted using the method described in section 3.3 to produce

that value when presented with the same operating condition again. At the same

time, the integral control is reset to zero so the control output will not be affected

by the automatic trimming mechanism. Trim values obtained from the auto-trim

FNN will be used to correct the trim values of the local controller in a local mode,

or the trim values for the local controllers involved in a transition.

55

• Whenever the auto-trim FNN presents a valid output, meaning that the FNN was

already trained for the given input, the trim value generated by the auto-trim FNN

will be used by local controllers instead of the default trim value defined when the

local controllers were designed. Therefore, initially the controller will use the

default trim values, but later on, as the automatic trimming progresses in actual

flight, the trim values will be replaced by the ones learned from previous

experiences in flight.

5.3.1.7 Dynamic Compensation Filter

For a rotary a helicopter UAV, like the one used for this work, there is some

dynamics associated with the rotor called the flapping dynamics. The models used to

design the local controllers discarded that part of the dynamics given that in the actual

vehicle the states associated to this behavior are not measured nor estimated. However,

the interaction of the rotor dynamics with the fuselage generate a couple of lightly

damped modes that are not captured by the model and need to be compensated.

Following the ideas from [18], dynamic compensation of the mentioned modes was

implemented using notch filters in the cyclic control inputs of the rotor.

For both the longitudinal cyclic (mpδ) and the lateral cyclic (mrδ) controls a notch

filter was applied at the mode transition control output, with a transfer function of the

form

2
0

2

2
0

2

wBSs
wBSsH N ++

++= α , (44)

56

where 0w is the frequency of the mode to be eliminated, B is the bandwidth of the notch

filter, and α is the gain of the filter at 0w , i.e. 10 <≤ α for the notch filter. The values of

these parameters were adjusted based on analysis of flight data generated when the filters

were not present. The dynamic compensation filters were implemented in discrete time

using the bilinear transformation, equivalent to replacing the integrators in (44) with

trapezoidal integrators given by

1

1

1
1

2
)(−

−

−
+=

z
zTzH N

I , (45)

with

2

2
tan

0

0

w

Tw

TN

�
�

�
�
�

�

= , (46)

where T is the sample period.

5.3.2 Adaptation Mechanism Component

The adaptation mechanism component calls the adaptation routines of the mode

transition control and also includes a set of active plant models (one for each transition),

which serve as partial models of the plant in the transitions. This concept is explained in

next section.

5.3.2.1 Active Plant Models

For each transition there is an ACM in the MTC component and an associated

active plant model (APM) in the adaptation mechanism component. The purpose of the

57

APMs is to serve as partial models of the plant in the transitions and provide the

sensitivity matrices required for adapting the ACMs. The APMs used here follow the

active modeling framework presented in section 4.2. That is, each ACM uses a FNN to

represent the unknown nonlinear dynamics corresponding to the aerodynamics and

propulsive forces acting on the vehicle, but also some known nonlinearities were

incorporated into the models to speed up the learning of the FNNs. The new

representation of the APMs given in Chapter 4 constitutes an improvement with respect

to what was presented in [67].

Following the method presented in section 4.3, a linearized model of the vehicle

is obtained near the actual operating point, defined by the pair * *((), ()) (,)x k u k x u= , from

the APM given by equation (29), repeated here for convenience

***))(())(()1(fukuxkxkx +−Γ+−Φ=+ , (47)

where Φ , Γ , and *f are defined in equation (30). This incremental model is used by the

control adaptation mechanism to adapt the ACMs as will be discussed below.

5.3.2.2 Plant Adaptation Mechanism

The plant adaptation mechanism (PAM) is used to train the APMs. When the

vehicle is in a transition, the input/output information from its sensors is used by the plant

adaptation mechanism to train this model by calling the recursive least squares training

routine from the FNN. To do that, the state values are transformed to body frame and the

gravity effect is subtracted so the FNN accommodates to the model given by equation

(20). The plant adaptation mechanism can be disabled at any time to free system

58

resources, if required. In that case, the last value of the APM is used by the control

adaptation mechanism to compute the sensitivity matrices.

5.3.2.3 Control Adaptation Mechanism

The control adaptation mechanism (CAM) provides the adaptation functionality

to the ACMs. When an ACM is active and the control adaptation mechanism is enabled,

a dynamic optimization algorithm is used to find the optimal control value at each time

step; the optimal blending gains that minimize the error between the optimal control and

the control produced by the ACM are also computed. These optimal blending gains

constitute the desired outputs for the recursive least squares training algorithm in the

FNN corresponding to that ACM, which is in turn called by the control adaptation

mechanism.

The dynamic optimization algorithm used to compute the optimal control value

uses a finite horizon optimal control methodology (like a receding horizon control); the

latter is based on the linearized model of the vehicle, which is obtained in turn from the

sensitivity matrices generated from the corresponding APM, as given by (30). The

objective of this optimal control problem is to minimize the following performance index

�
+

=
∆∆+=

Nk

ki

TT iuRiuiQeieJ)()()()(
2
1 , (48)

with 0 ,0 >≥ RQ , subject to

*)()()1(fiuixix ∆+Γ∆+Φ∆=+∆ for Nkkki ++= ,...,1, , (49)

with kxxkxkx ∆=−=∆ *)()(, where

59

.),(
and ,)()(

,)()(
,)()(

,)()()(

*
*

*

*

xuxff
uiuiu

xixix
xixix

ixixie

dd

d

−=∆
−=∆

−=∆
−=∆

∆−∆=

This is a discrete linear quadratic soft terminal controller problem [68]. Equation

(48) can be rewritten as

)()())()(())()((
2
1 iuRiuixixQixixJ T

Nk

ki
d

T

d ∆∆+∆−∆∆−∆= �
+

=

. (50)

The discrete Hamiltonian for this problem is

()
()*)()()1(

)()()()(2)()()()(
2
1)(

fiuixi

ixQixixQixiuRiuixQixiH

T

d
T
d

T
d

TT

∆+Γ∆+Φ∆++

∆∆+∆∆−∆∆+∆∆=

λ
 . (51)

Necessary conditions for a stationary solution are the Euler-Lagrange equations

, 0)(with ,)()()()()(

,)(with ,)()()1(*

=+∆−+Φ+∆=�
�

�
�
�

�

∆∂
∂=

∆=∆∆+Γ∆+Φ∆=+∆

NkixQiiixQ
x
iHi

xkxfiuixix

d
T

T
k

λλλ

where 0)1()()(=Γ++∆=
∆∂

∂ iRiu
u
iH TT λ .

Assuming a sweep solution for)(iλ of the form

)()()()(igixiSi +∆=λ ,

and after some algebra the following equations are obtained

()[]
()[]),())1(()1()1()(

,)1()1()1()(

*
1

1

ixQfigiSiSRig

iSiSRiSQiS

d

T
TT

TTT

∆−∆++Φ+ΓΓ+Γ+Γ−Φ=

Φ+ΓΓ+Γ+Γ−Φ+Φ+=
−

−

(52)

for kNkNki ,...,2,1 −+−+= , with 0)(=+ NkS and 0)(=+ Nkg .

The optimal control is given by

60

)()()()(ixiKiuiu f ∆−=∆ , (53)

where

()
() .)1()1()(

and ,))1(()1()(
1

*
1

Φ+ΓΓ+Γ+=

∆++ΓΓ+Γ+−=
−

−

iSiSRiK

figiSRiu
TT

TT
f

Application of the dynamic optimization algorithm gives the value of ()u k∆

which, in turn, is needed to compute)(* ku from)()(*
* kuuku ∆+= . This is the optimal

control value used to compute the desired blending gains for the active control model.

The approach constrains the blending gains so the ACM produces a convex

combination of the outputs of the local controllers and guarantees smooth transitions.

That is, given the outputs of the local controllers corresponding to the ACM, ()iu k and

()ju k , the objective is to minimize the magnitude of the error

2

221
*)()()(kunsdesiredGaikunsdesiredGaiku ji −− ,

subject to

2,1for 10 =≤≤ insdesiredGai i , and

121 =+ nsdesiredGainsdesiredGai .

A simple algorithm achieves this objective:

��
�

�
��
�

�

∆∆
−∆=
uu

kukuusat T
i

T))()((*

α , (54)

,
, 1

2

1

α
α

=
−=

nsdesiredGai
nsdesiredGai

where () ()j iu u k u k∆ = − , and

61

0, 0
() , 0 1

1, 1

x
sat x x x

x

<�
�= ≤ ≤�
� >�

 .

These desired gains become the desired outputs for the recursive least squares

algorithm that trains the FNN of the ACM. Given that these blending gains are

complementary, FNNs representing the ACMs were reduced to have only one output

(2insblendingGa), the other one was computed from

 21 1 insblendingGainsblendingGa −= .

A drawback of the algorithm presented above is the requirement of a lot of

computational power. Based on simulations performed in Simulink on a linearized model

of the vehicle, it was found that the duration of the horizon (N) had to be considerable

high to guarantee a stable behavior. The value originally chosen for the horizon was

N=25, but that value produced instability and had to be increased to 75. Measurements

showed that the computation time for this algorithm was around 50msec per sample in a

processor with more computational power that the actual onboard computer, which is

unacceptable given that the controller was working at a sample rate of 25Hz. This result

is not strange given the required value of N and considering that the simplified dynamics

of the UAV augmented with integrators had order 18. For this reason, a simplified

algorithm was developed that computed the optimal blending gains directly based on the

plant models. The algorithm used the same equation (54) but)(1 ku ,)(2 ku , and)(* ku

were replaced by vectors resulting from stacking together all the elements of matrices Φ

and Γ associated to linearized models of the vehicle for the modes involved in the

transition and for the actual operating condition respectively. This matrices are computed

from the active plant models.

62

CHAPTER 6

SOFTWARE IMPLEMENTATION OF THE ADAPTIVE
MODE TRANSITION CONTROL

The adaptive mode transition control architecture has been implemented using an

object oriented approach in C++. This chapter describes how the code was organized;

describes the components of the adaptive mode transition control library; describes the

utilities developed to setup, update, test, and examine the internal structure of the

adaptive mode transition control; and finally, describes the S-functions developed to

allow testing the code in Simulink.

6.1 Source Code Organization

The source code for the adaptive mode transition control has been organized in a

directory structure to separate the files of the adaptive mode transition control library and

the various utility programs for manipulation of an adaptive mode transition control. The

same directory structure includes workspace and projects files required for compilation of

the code in Windows as well as the make files developed for compilation of the code for

Linux and QNX. The code has been compiled for Windows using Visual C++ 6.0, for

Linux using GNU gcc compiler, and for QNX using GNU gcc cross compiler v.2.96 on a

Linux platform.

The root directory for the source code is called AMTCwork. This directory

contains the main workspace file (AMTCwork.dsw), the main make file (GNUmakefile),

a script to build the code for Windows when working on a Windows platform

63

(buildamtc.bat), and a script to build the code for Linux and QNX when working on a

Linux platform (buildamtc).

The actual source code is organized in subdirectories as follows:

• amtc contains all the code included in the adaptive mode transition control library,

the core of the adaptive mode transition control.

• AMTCall contains a project file to build all the libraries and utilities (only for

Windows).

• AMTClibraries contains a project to build all the libraries (only for Windows).

• AMTCob2 contains the source code, a project file and a make file to build a stand

alone application that runs the adaptive mode transition control. In Windows and

Linux it enables software in the loop simulation, in QNX it enables hardware in

the loop simulation and actual flight testing.

• AMTCsetup contains the source code, a project file and a make file to build a

utility to setup an adaptive mode transition control.

• AMTCsim contains the source code, a project file and a make file to build a library

that allows stand alone simulation of an adaptive mode transition control.

• AMTCtest contains the source code, a project file and a make file to build a utility

that allows stand alone simulation of an adaptive mode transition control.

• AMTCtestLC contains the source code, a project file and a make file to build a

utility that allows stand alone simulation of an adaptive mode transition control

configured with a single local controller.

• AMTCupdate contains the source code, a project file and a make file to build a

utility to update an adaptive mode transition control initialization file.

64

• bin contains the executables generated when the code is built.

• genMission contains the source code, a project file and a make file to build a

utility to generate a mission file.

• lib contains the libraries generated when building the code.

• MissionTest contains the source code, a project file and a make file to build a

utility to test a mission file.

• printAMTC contains the source code, a project file and a make file to build a

utility to print the contents of an adaptive mode transition control initialization file

to the standard output.

• printMission contains the source code, a project file and a make file to build a

utility to print the contents of a mission file to the standard output.

• RmaxModel contains the source code, a project file and a make file to build a

library including the model of a Yamaha Rmax helicopter. It uses the same source

code defining de UAV model from the GTmax simulation environment.

• Sfunctions contains the source code and dynamic libraries associated with the S-

functions wrapping the adaptive mode transition control and the UAV model for

testing in Simulink.

• SimData2m contains the source code, a project file and a make file to build a

utility to convert a binary file, containing recorded data from a simulation or flight

test, to a text file readable from Matlab.

65

6.2 Adaptive Mode Transition Control Library

The core of the adaptive mode transition control is incorporated in the mode

transition control library. This library defines the classes for the components of the

architecture and also the basic classes used throughout the code. Implemented classes can

be divided into three categories: low level or basic classes, intermediate level classes, and

high level classes. Higher level classes use the lower levels in the implementation. The

objects defined by all the classes are so distinctive and with functionality so diverse, that

no particular class hierarchy applies especially in the higher levels of the implementation.

Therefore the main method used for reusability of the code throughout the

implementation is class composition. For most of the classes the following elements were

implemented:

• a default constructor with the default parameters for the object at hand,

• a constructor based on a binary file that reads the main parameters from the file

and initializes the object accordingly,

• a load member function that is able to reinitialize an existing object based on the

data from a binary file,

• a save member function to save the current object to a binary file so it can be

retrieved later using a constructor based on a binary file or the load member

function, and

• an overload of the output stream operator able to print a text representation of the

object including all the important information in a readable manner.

Member functions enabling retrieval and saving of the objects were not

implemented in cases where the objects did not need to be persistent, like in the case of

66

the trajectory generation component. Below, a description of the classes for each category

is given.

6.2.1 Low Level or Basic Classes

Low level classes are the ones defining the basic functionality required for the

implementation of all the algorithms including vectors, matrices, vectors of vectors, and

vectors of matrices.

Originally, the intention was to define the low level classes using template

classes, but certain difficulties presented in the compilation of the code for QNX made

me desist. So, the current implementation uses code that defines the specific instances of

those original template classes with different names. The idea behind the implementation

of these classes was to allow the coding of the control algorithms with the same ease as

using Matlab, but without using Matlab libraries. The implementation of these classes

was carefully crafted looking for ease of use, memory efficiency, and optimal speed.

Some of the functionalities implemented are:

• Copy constructors and assignment operators (=, +=, -=, *=, /=).

• Comparison operators (== , !=).

• Inner and outer product of vectors.

• 2-norm, infinity norm and n-norm of vectors.

• Matrix by vector and vector by matrix multiplications.

• Row wise and column wise Gaussian elimination algorithms for efficient

implementation of pre and post multiplication by an inverse matrix and efficient

matrix inversion.

67

• Subscript operators for vectors and matrices.

• Extraction of sub-vectors and sub-matrices.

• Assignment of a vector to a sub-vector and a matrix to a sub-matrix.

• Operator | for concatenation of vectors.

• Operator | for stacking of matrices side by side, and “,” for stacking matrices up

and down.

• Conversion functions and cast operators to convert from vectors to matrices and

vice versa.

• Reshaping of matrices.

• Some basic functions of vectors like exponential, sine, cosine, etc.

• Some basic functions of matrices like exponential, inverse, determinant, rank,

transposition, etc.

The basic classes included in the adaptive mode transition control library are:

VectorOfDouble, VectorOfFloat, VectorOfInt, MatrixOfDouble, MatrixOfInt,

VectorOfVectorsOfDouble, VectorOfMatricesOfDouble.

6.2.2 Intermediate Level Classes

This category includes the classes defining generic components used in the

adaptive mode transition control architecture that are not specific to the architecture. The

classes included in the adaptive mode transition control library corresponding to this

category are: three classes of spline interpolators, three filter classes, and the FuzzyNN

class. The classes mentioned here make extensive use of the low level classes mentioned

before.

68

6.2.2.1 Spline Interpolator Classes

There are three classes of spline interpolators used in this implementation:

CubicSplineInterpolator, FifthOrderSplineInterpolator, SeventhOrderSplineInterpolator.

These classes define n-dimensional spline interpolators, as their name indicates they

differ in the order of the splines used for the interpolation. These classes are used by

objects of classes MissionPlanning and TrajetoryGeneration to generate the trajectories

corresponding to a given mission as explained in sections 5.1 and 5.2. One of the data

members of these classes is an object of class MatrixOfDouble used to store the

coefficients of the polynomials representing the splines. The method

ComputeCoefficients is used to calculate the coefficients and store them in the

coefficients matrix. Once the coefficients have been computed the methods getValueAt,

getDerivativeAt , and getSecondDerivativeAt can be used to evaluate the generated

splines and their first and second derivatives at any value of the independent variable.

6.2.2.2 FuzzyNN Class

This class implements the fuzzy neural networks discussed in Chapter 3. The

class Rule, defined in the same header file that FuzzyNN, represents the objects for each

of the rules of the fuzzy neural network. The rules are organized in a linked list so the

limit to the size of the fuzzy neural networks is determined by the memory available.

However, for computational efficiency the fuzzy neural networks include a variable

maxNumberOfRules to constrain their size, so no more than that number of rules are

created. Each rule includes a VectorOfInt object called antecedentVector that indicates

the combination of the input membership functions in each input coordinate associated

69

with the premise part of the rule. There are also MatrixOfDouble objects called initMatrix

and matrix that represent the consequent matrices before and after the recursive least

squares correction. The matrices used by the recursive least squares algorithm called

XtranspX and YtranspX are also stored in each rule. The values of the mean and inverse

deviation parameters for the input membership functions for each if the input coordinates

are organized in objects of class VectorsOfVectorsOfDouble.

The class FuzzyNN has methods implementing the learning algorithms discussed

in Chapter 3 and also to calculate the output and the Jacobian matrix at any value of the

input vector.

6.2.2.3 Filter Classes

There are three classes that implement filters in the adaptive mode transition

control library: SPfilter, StateFilter and MeanDevFilter. SPfilter implements the set point

filter discussed in section 5.3.1.1, StateFilter implements the state filter discussed in

section 5.3.1.2, and MeanDevFilter implements a special filter for computing the mean

and standard deviation value of an input vector over time. An object of the last class is

used by the MTC class to determine when the data generated by the active plant models

is good enough.

6.2.3 High Level Classes

The classes in this category define the objects representing the main components

and subcomponents of the adaptive mode transition control architecture described in

Chapter 5, and also an object that encapsulates the whole structure of an adaptive mode

70

transition control. These classes make extensive use of the basic classes and the

intermediate level classes for the implementationof the components. The high level

classes in the adaptive mode transition control library are: MissionPlanning,

TrajectoryGeneration, LocalController, ActiveControlModel, MTM, MTC,

ActivePlantModel, AM, MonitorModule, and AMTC. A brief description of each of

these classes is presented in the sequel.

6.2.3.1 MissionPlanning Class

This class defines the mission planning component functionality as discussed in

section 5.1. A structure called Task is defined to capture all the information required for

each task of the mission. The tasks are generated through the use of several high level

methods (like hover, flyTo, holdOn, addMission), which in turn call a low level method

(addTask) to add the tasks to the mission and organize them in a queue (the task queue).

The method setMissionConstraints is used to set the maximum speed, maximum

acceleration, maximum jerk, maximum angular speed and maximum angular acceleration

constraints. setInitialState method is used to set the initial state of the vehicle for the

mission at hand. When the mission is executed, method getNexTask is called to retrieve

each task in an orderly manner and method setTaskCompletedFlag is used to pass the

information received from the trajectory generation component to the mission planning

object.

6.2.3.2 TrajectoryGeneration Class

This class defines the trajectory generation component described in section 5.2.

Several methods are used for the generation of the trajectories as described in the sequel.

71

The tasks received from the mission planning component are set with the addTask

method, which calculates the spline used for representation of the trajectory for the

current task. getSetPoint method is used to calculate and retrieve the set points at each

sample time. The method getTaskCompletedFlag is called to retrieve the information

containing the termination status of the current task so that information can be sent to the

mission planning component. There is also a reset method used to clear the tasks

available in the trajectory generation object.

6.2.3.3 LocalController Class

This class implements the local controllers used in the mode transition controller

as described in section 5.3.1.3. Therefore, there is an instance of an object of this class for

each of the local modes in the mode transition control component. The most important

method of this class is the ComputeControl method that is used to compute the value of

the local control signal corresponding to given state and set point. There are some

methods to set the parameters of each local controller, the most important being

setParameters that allows setting the gain matrix and trimming value associated with the

local controller.

6.2.3.4 ActiveControlModel Class

This class implements the functionality of the active control models presented in

section 5.3.1.5. One of the data members of this class is a FuzzyNN object that is used to

compute the blending gains by getBlendingGains method. The main method of this class

is ComputeBlendedControl which is called by the mode transition control component to

calculate the control signal when the vehicle is in a transition. Pointers to the local

72

controllers associated with the active control model are used to access them and blend

their outputs.

6.2.3.5 MTM Class

This class implements the functionality of the mode transition manager discussed

in section 5.3.1.4. A MatrixOfInt object represented by data member

modeTransitionsTable is used to hold a table of the transitions for the current setup of the

mode transition control. In that table, rows and columns are the identification numbers of

the modes involved in the transitions and the entries are the identification numbers of the

active control model and active plant model corresponding to the transitions. A zero entry

in that table means that there is no active control model or active plant model associated

with the transition, so the mode transition controller will switch abruptly from one mode

to the other in that case. The parameters of the mode membership functions are stored in

two data member objects of class VectorOfVectorsOfDouble: modeCenters and

modeInvDeviations. When setting up the mode transition controller, method addMode is

used to add a mode specifying its associated parameters, and method setTransition is used

to set the appropriate entry in modeTransitionsTable. When the mode transition control is

executed the getMode method is used to determine the current mode of operation

indicating if the plant is in a local mode or a transition. This information is used by the

mode transition control component to determine whether it should execute a local

controller or an active control model.

73

6.2.3.6 MTC Class

This class implements the functionality of the mode transition control component

discussed in section 5.3.1. The class includes pointers to a linked list of objects of

LocalController class and a linked list of objects of ActiveControlModel class. Other

important data members of this class are: an object of class MTM called

ModeTransitionManager, an object class SPfilter called setPointFilter, and an object class

StateFilter called UAVstateFilter. The main methods for this class can be categorized as

methods for setup of the MTC object, methods for preparation of the MTC object before

execution, methods for execution of the mode transition controller, and auxiliary methods

used in the execution of the mode transition controller.

The most important methods for setup of the MTC object are setAM_Ptr,

addMode, and addTransition. setAM_Ptr method is used to set a pointer to the adaptation

mechanism object to allow some required interactions with that component. addMode

method is used to add a new mode to the mode transition controller structure. When

called, it adds a new object of class LocalController to the linked list of local controllers,

adds a new active plant model object in the adaptive mode transition control component

associated with the local mode, and calls the addMode method of

ModeTransitionManager object. addTransition method is used to add a new transition to

the mode transition controller structure. When called, it adds a new object of class

ActiveControlModel to the linked list of active control models, it links that active control

model to the local controllers associated to that transition, it adds a new active plant

model object in the adaptive mode transition control component associated to the

transition at hand, and calls setTransition method of ModeTransitionManager object.

74

The most important methods for preparation of the MTC object before execution

are reset, setInitialState, and setInitialOutput. Reset method is used to reset all the

variables in the MTC object in preparation for execution. setInitialState and

setInitialOutput methods are called immediately before starting the mode transition

controller. setInitialState method initializes some internal variables and the state filter

based on the initial value of the state. setInitialOutput is used to set the initial output

value, to initialize the integral control value, and to set some variables required

specifically by dynamic compensation filter discussed in section 5.3.1.7. Notice that the

functionality of the dynamic compensation filter is embedded in the MTC object and is

not represented by a different class.

The most important auxiliary methods used in the execution of the mode

transition controller are: autoTrim, correctOutput and filterOutput. These methods will be

mentioned below.

The most important methods for execution of the mode transition controller are

setUAVstate, setSetPoint, and computeControl. Each sample time the mode transition

controller is executed in the following manner: first, setUAVstate method is called to set

the value of the state, run the state filter, and call getMode method of mode transition

manager object to determine the current mode; second, setSetPoint is called to set the set

point value received from the trajectory generation component and run the set point filter;

and finally, computeControl method is called to calculate the control signal value.

computeControl method performs the following operations: first, it calls autoTrim

method to execute the automatic trim mechanism discussed in section 5.3.1.6; second, it

executes a local control or an active control model, which in turn executes the local

75

controllers associated with a transition, depending on the mode determined when

setUAVstate was called; third, it calls correctOutput method to adjust the integral control

to avoid discontinuities when the controller is started or when the mode changes; and

finally, it calls filterOutput method to execute the dynamic compensation filter discussed

in section 5.3.1.7 and also impose limits to the control signal.

6.2.3.7 ActivePlantModel Class

This class implements the active plant model components described in section

5.3.2.1. This class has an object data member of class FuzzyNN called FNN representing

the model of the plant in the corresponding transition region. The class declares MTC and

AM as friend classes so they can access directly the FNN object.

6.2.3.8 AM Class

This class implements the adaptation mechanism component discussed in section

5.3.2. The class includes a pointer to a linked list of objects of class ActivePlantModel

representing the active plant models used in the transitions as described before. In the

current implementation there is also a pointer to a linked list of objects of class

ActivePlantModel representing the models of the plant in the local modes. The most

important methods of this class can be categorized as methods for setup of the AM

object, methods for execution of the adaptation mechanism, and auxiliary methods used

in the execution of the adaptation mechanism.

The most important methods for setup of the AM object are setMTC_Ptr,

addActivePlantModel, addLocalPlantModel, and setAdaptationMode. setMTC_Ptr

method is used to set a pointer to the mode transition control component, which is

76

required to get the mode information from it. addActivePlantModel method is used to add

an active plant model to the linked list of active plant models associated to the transitions,

it is called by addTransition method of the adaptive mode transition control component.

addLocalPlantMode method is used to add an active plant model to the linked list of local

plant models; it is called by addMode method of the adaptive mode transition control

component. setAdaptationMode method allows activating or deactivating the plant

adaptation and the control adaptation mechanisms implemented by this class by mean of

setting or resetting the flags called plantAdaptationEnabled and

controlAdaptationEnabled.

The most important auxiliary methods used in the execution of the adaptation

mechanism are adaptPlantModel, computeDeltaU, and adaptControlModel.

adaptPlantModel method performs the plant adaptation mechanism described in section

5.3.2.2 adapting the current active plant model based on known values of the state and

control signal applied to the plant. computeDeltaU method is used to calculate the value

of the optimal correction in the control signal, ()u k∆ , based on an incremental model

obtained from current active plant model using the algorithm explained in section 5.3.2.3.

adaptControlModel performs the control adaptation mechanism using the value ()u k∆ ,

obtained by computeDeltaU, to adapt the corresponding active control model as

explained in section 5.3.2.3.

The most important methods for execution of the adaptation mechanism are

runAdaptation and runPlantAdaptation. runAdaptation method calls adaptPlantModel

and/or adaptControlModel only when they are enabled according to the current value of

the flags plantAdaptationEnabled and controlAdaptationEnabled. runPlantAdaptation

77

calls adaptPlantModel only when it is enabled according to the current value of the flag

plantAdaptationEnabled. In current implementation of AM class some logic was added to

inhibit the control adaptation when the values of the state estimated from the active plant

models are no good enough.

6.2.3.9 MonitorModule Class

This class defines an object used to record the most important signals in the

execution of the adaptive mode transition control in a binary file for future analysis, for

instance to plot the results of a simulation or a flight test. The file generated by this

module can also be used for off-line training of the active plant models and active control

models of the adaptive mode transition control. A brief description of the methods

implemented in this class is as follows:

setOutputFileName method is used to set the name of the binary file being

generated. When this method is called, the current file, if any is closed and a new file

with the given name is opened for recording the signals from that moment on.

• closeFile method is used to explicitly close the current file.

• setMode, setSetPoint, setIntegralControl, setControlOffset, setControlInput,

setActualControlInput, setUAVstate, setExpectedUAVstate, setAcceleration,

setFilteredVelocity, setAdaptationMode, setComputationTime methods are used

to set the value of the signals to be recorded at a sample time.

• recordSignals method is used to save the actual values of the signals to the file.

78

6.2.3.10 AMTC Class

This class implements the whole adaptive mode transition architecture. This

means that the class includes object data members representing all components of the

architecture: an object of MissionPlanning class, an object of TrajectoryGeneration class,

an object of MTC class, an object of AM class, and an object of MonitorModule class.

The main purposes of this class are:

• provide a way to pack the structure of the whole architecture in a way that allows

saving and retrieving the information of the whole adaptive mode transition

control from a single file, and

• simplify the interface required to create stand alone simulations, S-functions for

Simulink, and software in the loop simulations.

The main methods of this class are setOutputFileName, closeOutputFile,

setAdaptationMode, setSimkDelay, generateSetPoint, and generateControl.

setOutputFileName method sets the name of the file used by the MonitorModule object

to save recorded data. closeOutputFile method closes the file used to save recorded data.

setAdaptationMode method allows activating or deactivating plant adaptation and control

adaptation mechanisms. setSimkDelay allows setting a simulated delay that is

implemented in the execution of the adaptive mode transition controller. generateSetPoint

method executes just the mission planning and trajectory generation components to

produce the set point for current time. generateControl method executes the whole

architecture for current time.

79

6.2.4 Other Functionalities Included in the Adaptive Mode Transition
Control Library

Besides the classes explained before, there is a class called UAVlinModel that is

used to represent a linearized model of the UAV under control at certain operating

condition. This class is employed to pack the information about the linearized models that

are used to in the setup of the adaptive mode transition control when calling addMode

method of the MTC class. The main data members representing the linearized model are

two objects of class MatrixOfDouble, A and B, representing the matrices of the model

and two objects of class VectorOfDouble, uTrim and UAVstateTrim, representing the

operating conditions of the linearized model. The class also provides the functionality

required to perform a simulation of the model through methods setInitialState, setInput,

setWind, and getOutput.

Some utility functions required implementing some transformations required

throughout all the code are also included in the adaptive mode transition control library.

A set of functions wrapping the adaptive mode transition control architecture

were developed to facilitate the integration of the code with the GTmax simulation

environment for software in the loop simulation. GTmax software is a flexible

environment developed at Georgia Tech that can be used for simulation or actual flight of

a helicopter UAV based on the Yamaha Rmax helicopter. The mentioned functions are:

• initAMTC, used to create a new object of class AMTC and initialize the

architecture based on information read from an initialization file.

• updateAMTC, used to execute all the components of the architecture at current

sample time.

80

• saveAMTC, used to save the structure of the architecture calling save method of

AMTC class.

• shutdownAMTC, used to delete the object of AMTC class and clean memory.

6.3 Utilities for Manipulation of an Adaptive Mode
Transition Control

The adaptive mode transition control library described in section 6.2 contains all

the code needed to carry out any implementation using the adaptive mode transition

control architecture. However, there are some tools required to be able to setup a new

adaptive mode transition control structure and manipulate an existing one. This section

describes the tools that were implemented for that purpose.

6.3.1 Setup, Update, and Visualization of an Adaptive Mode Transition
Control Initialization File

Typically, the components of the adaptive mode transition control architecture are

initialized based on a binary file called AMTC.dat. This file is generated from an existing

object of class AMTC using the save method. Therefore, an application is required to

setup the initial structure and parameters of the adaptive mode transition controller

required for the application at hand, and save the AMTC.dat file. The application created

for this purpose is called AMTCsetup. The source code for that application includes just

the file AMTCsetup.cpp which is compiled and linked to the adaptive mode transition

control library to generate the application. AMTCsetup.cpp defines the main() function

for the application, and follows the following procedure to generate the file AMTC.dat:

81

• First, default constructors of MTC and AM classes are used to generate default

objects.

• The objects are linked together using the methods setAM_Ptr for the object of

class MTC and setMTC_Ptr for the object of class AM. These objects are

customized calling the methods that set all the important parameters.

• addMode method of the MTC component is called as many times as required to

add and setup the local modes.

• addTransition method of the MTC class is called as many times as required to add

and setup the required transitions.

• At this point the structure of the adaptive mode transition controller is setup, so

the save methods of the objects are called to save them to the file AMTC.dat in

such a way that the same file can be used to initialize an object of class AMTC.

Besides of the AMTCsetup utility, another utility called AMTCupdate was

created to update the parameters of an existing AMTC.dat file. This application was

created in the same manner that AMTCsetup, i.e. a file AMTCupdate.cpp containing the

main() function for the application that is compiled and linked to the adaptive mode

transition control library. The procedure followed in AMTCupdate is as follows: an

object of class AMTC is created using the constructor based on a binary file using the

existing file AMTC.dat, then the parameters that need to be modified are setup using the

appropriate methods, and finally the save method of the object of class AMTC is called to

save the new file AMTC.dat.

There is another simple application that was created to visualize the contents of

the AMTC.dat file in a human readable way. This application was called printAMTC.

82

When this application is called, it reads the file AMTC.dat and then prints all the

information in the standard output. The code for the applications is pretty simple, it just

uses the constructor based on a binary file of the AMTC class to read the file AMTC.dat

and then it prints the contents to standard output using the output stream operator. This

application can also print the contents of an AMTC file with a different name than

AMTC.dat; in that case the name of the file is given as a parameter. A text file can be

generated redirecting the output of the application.

6.3.2 Generation of a Mission Initialization File

Applications were created to generate, test and visualize the content of a Mission.

genMission is a program that is customized for generating the required mission in a file

called Mission.dat. Than file can be loaded by the mission planning component and

defines the mission to be performed. MissionTest is an application created to test any

Mission.dat file. That application loads the mission and executes it as if it were executed

by the adaptive mode transition control architecture. The resulting data are saved in a file

that can be used in Matlab to plot the trajectory. Additionally, an application called

printMission was created to print the contents of a mission given by a file Mission.dat or

any mission file specifying the name of the file as a parameter. This is useful to check the

content of the generated tasks.

83

6.3.3 Stand Alone Simulation of the Adaptive Mode Transition Control
Architecture

An application called AMTCtest was created to run a stand alone simulation of

the adaptive mode transition control. This application takes files AMTC.dat and

Mission.dat as input and performs the simulation of the adaptive mode transition control

architecture applied to a model of the Yamaha Rmax helicopter saving the results in a file

called MonitoredData.dat.

Another application called AMTCtestLC was created to do a stand alone

simulation like AMTCtest but this time setting up the adaptive mode transition control to

use only one local controller based on the file LocalController.dat. This application was

used to test local controllers.

6.3.4 Stand Alone Executable for Hardware in the Loop Simulation
and Flight Testing

An application called AMTCob2 was created that allows running the adaptive

mode transition controller in real time. This program initializes the adaptive mode

transition control architecture based on the AMTC.dat file, and the mission to be

performed based on the file Mission.dat. AMTCob2 communicates with the GTmax

software to perform simulations and flight testing.

In Windows and Linux AMTCob2 enables in software in the loop simulation; in

QNX it enables hardware in the loop simulation and also can be used in flight testing.

84

6.3.5 Conversion of Simulation and Flight Data File to a m-file for
Matlab

When the adaptive mode transition control architecture is run in simulation or

actual flight, a file is generated by the object of class MonitorModule containing a record

of the important signals. This file, usually called MonitoredData.dat, can be converted to

an m-file called MonitoredData.m using the SimData2m application. That file can be

used in Matlab to plot the results of a simulation or flight test.

6.4 S-functions for Testing of the Adaptive Mode Transition
Control in Simulink

For the purpose of testing the adaptive mode transition control architecture in

Matlab using Simulink, several S-functions were developed that wrapped the code of the

adaptive mode transition control architecture. These S-functions were implemented using

the templates provided with Matlab, and linking the code to the adaptive mode transition

control library. The S-functions were compiled using the mex utility of Matlab.

The following S-functions were implemented:

• TrajectoryGeneratorModel, an S-function wrapping mission planning and

trajectory generation components to test the trajectory generation part of the

architecture.

• TrajectoryGeneratorModelNsamp, an S-function identical to

TrajectoryGeneratorModel except that it generated N samples into the future of

the trajectory at a time.

85

• AMTCmodel, an S-function wrapping the whole adaptive mode transition control

architecture.

• MTCmodel, an S-function wrapping the mode transition control component.

• RmaxModel, an S-function wrapping the model of the Yamaha Rmax helicopter

• RmaxModel_IS, an S-function identical to RmaxModel but allowing to specify

the initial state as a parameter.

• RmaxModelTrim, an S-function wrapping the model of the Yamaha Rmax

helicopter in a specific way required to compute the trim conditions associated to

a given operating condition.

86

CHAPTER 7

IMPLEMENTATION ON THE OPEN CONTROL
PLATFORM

The adaptive mode transition control architecture was implemented using the

Open control Platform (OCP). The OCP is a software infrastructure developed by Boeing

in collaboration with Georgia Tech and others to enable the implementation of advanced

control algorithms for UAVs [59-63]. It allows for system reconfiguration,

interoperability of different operating systems and platforms, plug and play connectivity,

while it enables the implementation of sophisticated multi-rate hybrid systems. The OCP

includes a controls API that allows the user to generate easily the code required for the

application at hand, and customize it to include his own control algorithms. Georgia Tech

has also developed a Hybrid Controls API that has been integrated into the OCP, which

facilitates the implementation of certain common operations required for hybrid control

systems [69-71].

7.1 Implementation on the OCP Using the Controls API

The adaptive mode transition control architecture has been implemented using the

controls API of the OCP. Figure 14 shows the structure of the implementation on the

OCP. For this implementation, there are five components running in one process on the

OCP:

• the GTmax link component for the communication interface with the primary

flight computer in the UAV,

87

• the high level component,

• the middle level component,

• the mode transition controller, and

• the adaptation mechanism component.

Figure 14. Structure of the Implementation on the OCP

The steps required for generating the implementation on the OCP are illustrated in

Figure 15, and can be summarized as follows:

• A block diagram with the structure of the application at hand is drawn in

Simulink.

Gtmax Link

High Level Control

Middle Level Control

Mode Transition Controller Adaptation
Mechanism

TaskInfo TaskCompleted

SetPoint

AdaptController

AdaptationCompleted

GtmaxState GtmaxCommand

S/W Trigger

Process 1

88

Figure 15. Steps for Implementation on the OCP

• The model file is used as input to the OCP front end tool that generates an

intermediate representation of the implementation known as the component input

file. In older versions of the OCP this file was a text file (ComponentInfo.txt),

now considered a legacy component info file. The latest versions of the OCP use

an XML format for the component info file (ComponentInfo.xml), which can be

generated directly or from a legacy version using the OCP front end tool. Is also

possible to write the component info file by hand following the format specified

in the OCP documentation. The component info file is composed of the following

information: definition of the structure of the signals used to communicate to

different components; definition of the components including their input and

output ports, the type of the signals associated to those ports, and the behaviors

that the component implements, indicating the input ports that activate those

behaviors and the output ports accessible from them; definition of the processes

included in the implementation, that is, which are the executables required and

which components are included in each one of them; definition of the

Simulink

OCP Back End
Tool

OCP Front End
Tool

Compiler Final Application:
OCP Processes

ComponentInfo.xml
RateGroupInfo.xml

OCP code

*.mdl file

User code +
libraries

User input

89

interconnection structure of the implementation; and finally, definition of QoS

constraints. Another file generated by the OCP front end tool is a rate group info

file indicating the rates that are going to be used in the implementation. The

legacy text version of this file is RateGroupInfo.txt and the new XML file is

RateGroupInfo.xml.

• The next step is the generation of the OCP code required for the implementation.

This task is accomplished automatically using the OCP back end tool, which takes

as input the component info and rate group info files and produces the OCP code

as output. The project files required to compile the application are also generated

automatically by the OCP back end tool. Make files required to compile the code

for Linux or QNX can be generated from the project files using a make generation

tool included with the OCP. Generated code employs the controls API to enable

the use of the OCP infrastructure by the application at hand. However, the

generated code is just a template that does not include the user code implementing

the functionality of the application. This leads to the following step.

• The OCP code is populated with the user code implementing the functionality of

the application at hand. For the case of the implementation of the adaptive mode

transition control architecture, this step was enormously simplified given that all

the components were already defined in the adaptive mode transition control

library. The only code necessary on the OCP implementation was the one to

create instances of the components, initialize those instances, specify in the

behaviors how to execute the different components and connect their inputs and

outputs to those of the OCP components.

90

• The final step is building the code. For the case of the adaptive mode transition

control architecture, the core of the implementation was built separately in the

adaptive mode transition control library and then the OCP code was compiled and

linked to that library to generate the final application.

7.2 Implementation Using the Hybrid Controls API

The Hybrid Controls API establishes a framework that facilitates the

implementation of hybrid systems on the OCP. The integration of the Hybrid Controls

API with the OCP offers new transition management services that can be used in any

component hybrid in nature. When a component is declared as a hybrid component on the

OCP, a coordinator will be associated to that component. The coordinator is used to

implement the coordination logic of the hybrid system. Usually this coordination logic is

specified as a finite state machine that is triggered by values of the inputs and/or outputs

of the component. The actual functionality of the component is implemented by several

configurations defined by the user to represent each of the possible modes of operation of

the component. Each configuration can have access to the inputs and outputs of the

component. The coordinator decides which configuration should be active at a given time

and has the ability to activate or deactivate the configurations as required.

The adaptive mode transition control architecture can be considered as a hybrid

system. Specifically, the mode transition control component switches between local

controllers and active control models as the plant is considered to be in a local mode or a

transition according to what the mode transition manager subcomponent decides based on

91

the state of the plant. Therefore, the mode transition control can be implemented on the

OCP using the transition management capabilities enabled by the Hybrid Controls API.

To exploit the Hybrid Controls API capabilities, two configurations are defined in

the mode transition control component. One configuration is associated to the mode

transition control component running a local controller in a local mode (Figure 16), and

the other is associated to the mode transition control component running an active control

model in a transition (Figure 17). In this implementation, the coordinator decides which

configuration to use based on the information already processed by the mode transition

manager subcomponent, so no additional state machine is required.

Figure 16. Local Mode Configuration for the Mode Transition Control Component

Set Points
From Middle Level

Mode Transition
Controller

UAV State Actuator Commands

Mode Transition
Manager

Local Controller

C1

�

Automatic Trim
Mechanism

Set Point Filter

State Filter Dynamic
Compensation

Filter

92

Set Points
From Middle Level

Mode Transition
Controller

UAV State Actuator Commands

Mode Transition
Manager

Local Controllers

Active Control
Models

C2

C1

ACM1

�

�

Automatic Trim
Mechanism

Set Point Filter

State Filter

From CAM

Dynamic
Compensation

Filter

Figure 17. Transition Configuration for the Mode Transition Control Component

It would be possible to implement a configuration for each local mode and one

configuration for each transition, but this is not practical. The current implementation of

the mode transition control has the flexibility of allowing to define as many modes and as

many transitions as required without changing a line of code. That is, the structure of the

adaptive mode transition control architecture for an application is defined dynamically

based on information provided in a configuration file. To keep this capability the local

modes or transitions are not hard coded in the OCP implementation.

93

CHAPTER 8

SIMULATION AND FLIGHT TEST RESULTS

8.1 GTmax Simulation Environment

The GTmax is the UAV platform used for testing the adaptive mode transition

control architecture (Figure 18). The GTmax belongs to the UAV lab of the School of

Aerospace Engineering at Georgia Tech; it is based on a Yamaha Rmax industrial

helicopter that has been instrumented to support research activities for UAVs [72].

Figure 18. The GTmax

94

The helicopter carries an avionics box instrumented with an Inertial Measurement

Unit, GPS, Sonar Altimeter, a camera, and two computer processors that allow control

algorithms to be implemented onboard the UAV. This box communicates with a ground

control station through wireless Ethernet and wireless serial links. The ground control

station includes a computer to monitor the vehicle status and send commands to the

onboard controls.

The simulation environment accompanying the GTmax UAV, called the GTmax

software, is a flexible software environment developed by Georgia Tech. Its modular

structure not only allows performing software in the loop simulations, but also

implements the software used in the vehicle to test different control algorithms. A screen

shot of this simulation environment is presented in Figure 19. The GTmax software is

composed of three basic modules: the ground control station, the onboard software, and

the onboard 2 software. These modules are built into one or several executables

depending of the configuration being tested. Three configurations are employed for

testing as discussed in the sequel.

8.2 Simulation and Flight Configurations

8.2.1 Software in the Loop Simulation Configuration

For the purpose of validation and verification of all the algorithms, a strict

sequence of tests has been performed. Upon development of the algorithms and

implementation of their code, extensive software in the loop simulations were carried out

using the GTmax simulation environment. These first tests allowed detection of glitches

in the algorithms and the code, and also permitted tuning of the parameters involved

95

without putting the actual vehicle into risk. The GTmax software simulates not only the

model of the vehicle but also the sensors, the actuators, and the communications between

the components. Furthermore, given that the code used in the simulations was the same

used in the actual vehicle, the results of the software in the loop simulation were pretty

valuable in improving the chances of success in actual flight tests.

Figure 19. A Screen Shot of the GTmax Software

For this kind of simulations, the code of the adaptive mode transition control

architecture was integrated with the GTmax simulation environment (Figure 20). This

integration was accomplished inserting some code in the onboard2 module of the GTmax

96

software that called the appropriate functions to initialize and execute the adaptive mode

transition control architecture. For this purpose, the software interface with the adaptive

mode transition control library discussed in section 6.2.4 was used. After inserting the

appropriate code, the Gtmax software was compiled and linked to the adaptive mode

transition control library to generate executables for Windows and Linux. Several scripts,

known as input files for the GTmax software, were created to perform the following

tasks: start and stop the communication with the onboard2 module including the adaptive

mode transition control architecture, start and stop the adaptive mode transition

controller, load a mission, and update the structure and parameters of the adaptive mode

transition controller. The same scripts were used for hardware in the loop simulations and

flight testing.

Figure 20. Software in the Loop Configuration

UAV model

On board 2
On board 1
(Navigation &

Baseline
Controller)

AMTC

Desktop (Windows or Linux)

GTmax AMTC Library

97

8.2.2 Hardware in the Loop Simulation Configuration

After extensive software in the loop simulations were completed successfully, the

next step was the hardware in the loop simulation. This kind of simulation tests the

algorithms on the actual hardware used on the vehicle verifying them under the

processing constraints imposed by it. The software configuration for this kind of

simulations is shown in Figure 21. Here, the same executable used in software in the loop

simulations is employed to simulate the ground control station and the onboard module

connected to a model of the dynamics of the vehicle and is sensors. The onboard 2

module in that executable is deactivated since the communications are redirected so the

onboard module now communicates with the onboard 2 module in a separate executable.

Figure 21. Hardware in the Loop Configuration

This onboard 2 module is running in the secondary computer of the GTmax UAV

under QNX, exactly as it would do in flight. Given that the software of the adaptive mode

UAV model

On board
2

On board 1
(Navigation &

Baseline
Controller)

Gtmaxlink

Desktop (Windows or Linux)

GTmax

Secondary Flight Computer
(QNX)

AMTC OCP
Components

GTmax Library

On board 2

OCP

AMTC Library

98

transition control architecture is running in the actual operating system and hardware

used in flight, this kind of simulation is an excellent test to make sure the software will

perform well in flight.

8.2.3 Flight Test Configuration

Once the results of the hardware in the loop simulation were satisfactory, the

algorithms were tested in flight on the actual vehicle. The software configuration used for

flight testing is shown in Figure 22. In this case all modules of the GTmax software are

compiled in separate executables. The ground control station is compiled for Windows

and runs in the ground control station computer. The onboard and onboard 2 modules are

compiled for QNX and run in the primary and secondary flight computers onboard the

vehicle. The tests are performed in the same way that the previous simulations except that

Figure 22. Flight Configuration

On board 1
(Navigation &

Baseline
Controller)

Gtmaxlink

G AMTC OCP
Components

GTmax Library

On board 2

OCP

AMTC Library

Primary Flight
Computer

(QNX)

Desktop (Windows)

GCS

UAV
Dynamics

Secondary Flight Computer
(QNX)

99

now the adaptive mode transition control architecture controls the actual vehicle in flight,

and all the flight infrastructure is in place.

8.3 Parameters for Simulations and Flight Test

The following configuration and parameters were used for the simulations and

flight tests presented here:

• The adaptive mode transition controller was set to operate at a sample rate of 25

Hz (sample period of 40msec).

• Four local modes were defined: mode one for hover (zero speed), mode two for

forward flight at 25ft/sec, mode three for forward flight at 50ft/sec, and mode four

for backward flight at 25ft/sec. Therefore, there were four associated local

controllers and local plant models. The inverse deviations associated to these

modes were set so the extent of each mode in terms of forward and sideward

velocities corresponded to a circle with radius 2.5ft/sec.

• Local controllers for the augmented system including the integral control used the

following weights for the LQR design:

Q = diag([1 , 1 , 100 , 3282.81 , 1 , 1 , 1 , 100 , 3282.81 , 3282.81 , 3282.81 , 100 ,

100 , 100 , 3282.81 , 3282.81 , 3282.81 , 4])

R = diag([1e+006 , 40000 , 160000 , 40000 , 10000])

• Three transitions were defined: transition one between modes one and two,

transition two between modes two and three, and transition three between modes

one and three. Therefore, there were three active control models and three active

plant models associated to the transitions.

100

• The set point for the main rotor angular velocity was set to 850 rpm.

• The set point filter was set to have a cutoff frequency of 1 Hz and a limiting

damping factor of 2. The state filter was set to have a cutoff frequency of 1Hz.

8.4 Software in the Loop Simulation Results

The hierarchical control architecture was first tested in software-in-the-loop

simulation using the GTmax simulation environment. The results for four flight segments

are presented here:

• Hover pointing North. Software in the loop simulation results for this test are

shown in Figures 23 to 27.

• Hover pointing North with heading changes to point East, West, and South.

Software in the loop simulation results for this test are shown in Figures 28 to

32.

• Hover - flight forward at 20ft/sec - hover – flight backward at 20ft/sec –

hover. Software in the loop simulation results for this test are shown in

Figures 33 to 37.

• A smooth box at 20ft/sec - move 400ft North, then move 400ft East, then

move 800ft South, then move 400ft west, and finally move to initial position.

Software in the loop simulation results for this test are shown in Figures 38 to

42.

To measure the performance of the controller, the following metrics were

computed for each flight segment: mean magnitude of the position error, maximum

101

magnitude of the position error, mean magnitude of the heading error, and maximum

magnitude of the heading error. The results are summarized in Table 1.

Table 1. Performance Metrics for Software in the Loop Simulations

Flight Segment

Mean
Magnitude
of
Position
Error
(ft)

Max
Magnitude
of
Position
Error
(ft)

Mean
Magnitude
of
Heading
Error
(deg)

Max
Magnitude
of
Heading
Error
(deg)

Hover 0.6267 1.8414 0.4011 1.4979

Hover with heading changes 0.7069 1.9734 2.4496 17.9465

Hover - flight forward at 20ft/sec -
hover – flight backward at 20ft/sec –
hover

4.3694 13.3478 2.0763 8.4715

A smooth box at 20ft/sec 3.6502 10.3857 4.1896 17.4970

It is observed how the controller makes the vehicle track the desired trajectories

keeping small errors. The first two flight segments show the behavior of the controller in

the local mode corresponding to hover. Third and fourth flight segments show the

performance of the controller in a local mode and transition regions. In the third flight

segment the vehicle transitions from mode 1 (hover) to mode 2 (forward flight at

25ft/sec) but, given that the set points set the velocity to 20ft/sec, the vehicle stay in the

transition region when flying forward. Then, the vehicle decelerates and stay in mode 1

(hover) for some time followed for a transition to mode 4 (backward flight at 25 ft/sec)

flying backwards and reaching a speed of 20ft/sec corresponding to the set points and

then it decelerates to return to hover. The fourth flight segment shows the ability of the

102

controller to track an arbitrary trajectory while performing the required transitions.

Whenever the vehicle accelerates or decelerates the error is kept bounded even though

there are peaks in the position error especially in the axis aligned with the acceleration

vector. This is the normal behavior of any controller.

Figures 27, 32, 37, and 42 show the errors of the plant models for each flight

segment. These errors correspond to the differences between the actual value of the state

and the values produced by the active plant models evaluated in the previous value of the

state and control input. It is observed how the mean of these errors is kept close to zero

and the magnitude is kept small demonstrating that the offline training and online plant

adaptation mechanism is working properly adjusting the models to represent the

dynamics of the vehicle.

103

 (a)

(b)

Figure 23. Software in the Loop Simulation Results for Hover: (a) Desired and
Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory

-60 -40 -20 0 20 40 60

-40

-30

-20

-10

0

10

20

30

40

50

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-40
-20

0
20

40 -40
-20

0
20

40

0

50

100

150

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

104

(a)

 (b)

Figure 24. Software in the Loop Simulation Results for Hover: (a) Desired and
Actual Position and Heading; (b) Desired and Actual Velocity in Body
Frame

0 10 20 30 40 50 60
-1

0

1

x
(ft

)

Desired
Actual

0 10 20 30 40 50 60
-2

-1

0
y

(ft
)

0 10 20 30 40 50 60

-60.2

-60

-59.8

z
(ft

)

0 10 20 30 40 50 60

-1
0
1

ps
i (

de
g)

time (sec)

0 10 20 30 40 50 60
-0.5

0

0.5

U
 (f

t/s
ec

)

Desired
Actual

0 10 20 30 40 50 60
-0.5

0

0.5

1

V
 (f

t/s
ec

)

0 10 20 30 40 50 60
-0.2

0

0.2

W
 (f

t/s
ec

)

time (sec)

105

(a)

(b)

Figure 25. Software in the Loop Simulation Results for Hover: (a) Position and
Heading Errors; (b) Velocity Errors in Body Frame

0 10 20 30 40 50 60

-1

0

1

ex
 (f

t)

0 10 20 30 40 50 60

-0.5
0

0.5
1

1.5
ey

 (f
t)

0 10 20 30 40 50 60
-0.2

0

0.2

ez
 (f

t)

0 10 20 30 40 50 60

-1
0
1

eP
si

 (d
eg

)

t ime (sec)

0 10 20 30 40 50 60

-0.5

0

0.5

eU
 (f

t/s
ec

)

0 10 20 30 40 50 60
-1

-0.5

0

0.5

eV
 (f

t/s
ec

)

0 10 20 30 40 50 60

-0.2

0

0.2

eW
 (f

t/s
ec

)

time (sec)

106

Figure 26. Software in the Loop Simulation Results for Hover: Actuator Commands

0 10 20 30 40 50 60
-0.22

-0.215
-0.21

th
ro

ttl
eL

ev
er

0 10 20 30 40 50 60
-0.34
-0.32

-0.3
-0.28
-0.26

co
lle

ct
iv

e

0 10 20 30 40 50 60
-0.05

0
0.05

pi
tc

hS
tic

k

0 10 20 30 40 50 60
-0.05

0
0.05

ro
llS

tic
k

0 10 20 30 40 50 60
-0.06
-0.04
-0.02

0
0.02

time (sec)

pe
da

l

107

Figure 27. Software in the Loop Simulation Results for Hover: Plant Model Errors
for Velocity, Euler Angle Rates and Main Rotor RPM

0 10 20 30 40 50 60
-0.05

0

0.05

eV
x

(ft
/s

ec
)

0 10 20 30 40 50 60
-0.1

-0.05
0

0.05

eV
y

(ft
/s

ec
)

10 20 30 40 50 60
-0.06
-0.04
-0.02

0
0.02

eV
z

(ft
/s

ec
)

0 10 20 30 40 50 60
-5

0

5

ep
hi

do
t (

de
g/

se
c)

0 10 20 30 40 50 60
-4
-2
0
2
4

et
he

ta
do

t (
de

g/
se

c)

0 10 20 30 40 50 60
-5

0

5

ep
si

do
t (

de
g/

se
c)

10 20 30 40 50 60
-0.4

-0.2

0

0.2

er
pm

time (sec)

108

 (a)

(b)

Figure 28. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Desired and Actual 2D Trajectory; (b) Desired and Actual
3D Trajectory

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-40
-20

0
20

40 -40
-20

0
20

40

0

50

100

150

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

109

(a)

 (b)

Figure 29. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Desired and Actual Position and Heading; (b) Desired and
Actual Velocity in Body Frame

0 20 40 60 80 100 120

-1

0
1

x
(ft

)

Desired
Actual

0 20 40 60 80 100 120
-2
-1
0
1

y
(ft

)

0 20 40 60 80 100 120

-60.2
-60

-59.8
-59.6

z
(ft

)

0 20 40 60 80 100 120
-100

0
100
200
300

ps
i (

de
g)

time (sec)

0 20 40 60 80 100 120

-0.5

0

0.5

U
 (f

t/s
ec

)

Desired
Actual

0 20 40 60 80 100 120

-0.5
0

0.5
1

V
 (f

t/s
ec

)

0 20 40 60 80 100 120

-0.2

0

0.2

W
 (f

t/s
ec

)

time (sec)

110

(a)

(b)

Figure 30. Software in the Loop Simulation Results for Hover with Heading
Changes: (a) Position and Heading Errors; (b) Velocity Errors in Body
Frame

0 20 40 60 80 100 120

-1
0

1

ex
 (f

t)

0 20 40 60 80 100 120
-1
0
1
2

ey
 (f

t)

0 20 40 60 80 100 120
-0.4
-0.2

0
0.2

ez
 (f

t)

0 20 40 60 80 100 120

-10
0

10

eP
si

 (d
eg

)

time (sec)

0 20 40 60 80 100 120

-0.5

0

0.5

eU
 (f

t/s
ec

)

0 20 40 60 80 100 120
-1

-0.5
0

0.5

eV
 (f

t/s
ec

)

0 20 40 60 80 100 120

-0.2

0

0.2

eW
 (f

t/s
ec

)

time (sec)

111

Figure 31. Software in the Loop Simulation Results for Hover with Heading
Changes: Actuator Commands

0 20 40 60 80 100 120
-0.22

-0.21

th
ro

ttl
eL

ev
er

0 20 40 60 80 100 120
-0.35

-0.3
-0.25

co
lle

ct
iv

e

0 20 40 60 80 100 120
-0.1

-0.05
0

0.05

pi
tc

hS
tic

k

0 20 40 60 80 100 120
-0.1

-0.05
0

0.05

ro
llS

tic
k

0 20 40 60 80 100 120
-0.4
-0.2

0
0.2
0.4

time (sec)

pe
da

l

112

Figure 32. Software in the Loop Simulation Results for Hover with Heading
Changes: Plant Model Errors for Velocity, Euler Angle Rates and Main
Rotor RPM

0 20 40 60 80 100 120

-0.05

0

0.05
eV

x
(ft

/s
ec

)

0 20 40 60 80 100 120

-0.05

0

0.05

eV
y

(ft
/s

ec
)

0 20 40 60 80 100 120

-0.01

0

0.01

eV
z

(ft
/s

ec
)

0 20 40 60 80 100 120

-5

0
5

ep
hi

do
t (

de
g/

se
c)

0 20 40 60 80 100 120

-5

0

5

et
he

ta
do

t (
de

g/
se

c)

0 20 40 60 80 100 120
-10

0

10

ep
si

do
t (

de
g/

se
c)

0 20 40 60 80 100 120

-0.1

0

0.1

er
pm

time (sec)

113

 (a)

 (b)

Figure 33. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Desired and
Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory

-400 -300 -200 -100 0 100 200 300 400

0

100

200

300

400

500

600

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-200

0

200
0

200

400

600

0

50

100

150

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

114

(a)

 (b)

Figure 34. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Desired and
Actual Position and Heading; (b) Desired and Actual Velocity in Body
Frame

0 20 40 60 80 100
0

200
400
600

x
(ft

)

Desired
Actual

0 20 40 60 80 100
-4
-2
0
2

y
(ft

)

0 20 40 60 80 100
-62

-60

-58

z
(ft

)

0 20 40 60 80 100

-5
0
5

ps
i (

de
g)

time (sec)

0 20 40 60 80 100
-20

0

20

U
 (f

t/s
ec

)

Desired
Actual

0 20 40 60 80 100
-2

0

2

V
 (f

t/s
ec

)

0 20 40 60 80 100
-4

-2

0

2

W
 (f

t/s
ec

)

time (sec)

115

(a)

 (b)

Figure 35. Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: (a) Position and
Heading Errors; (b) Velocity Errors in Body Frame

0 20 40 60 80 100

-10

0

10

ex
 (f

t)

0 20 40 60 80 100

-2
0
2
4

ey
 (f

t)

0 20 40 60 80 100
-2

0

2

ez
 (f

t)

0 20 40 60 80 100

-5
0
5

eP
si

 (d
eg

)

time (sec)

0 20 40 60 80 100

-5

0

5

eU
 (f

t/s
ec

)

0 20 40 60 80 100

-2

0

2

eV
 (f

t/s
ec

)

0 20 40 60 80 100
-2

0

2

4

eW
 (f

t/s
ec

)

time (sec)

116

 Figure 36.Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: Actuator
Commands

0 20 40 60 80 100

-0.4

-0.2

th
ro

ttl
eL

ev
er

0 20 40 60 80 100
-0.8
-0.6
-0.4
-0.2

co
lle

ct
iv

e

0 20 40 60 80 100

-0.1
0

0.1

pi
tc

hS
tic

k

0 20 40 60 80 100

-0.1
0

0.1

ro
llS

tic
k

0 20 40 60 80 100
-0.15
-0.1

-0.05
0

time (sec)

pe
da

l

117

 Figure 37.Software in the Loop Simulation Results for Hover - Flight Forward at
20ft/sec - Hover – Flight Backward at 20ft/sec – Hover: Plant Model
Errors for Velocity, Euler Angle Rates and Main Rotor RPM

0 20 40 60 80 100

-0.05

0

0.05
eV

x
(ft

/s
ec

)

0 20 40 60 80 100

-0.05
0

0.05
0.1

eV
y

(ft
/s

ec
)

0 20 40 60 80 100
-0.02

0

0.02

eV
z

(ft
/s

ec
)

0 20 40 60 80 100
-10

-5
0
5

ep
hi

do
t (

de
g/

se
c)

0 20 40 60 80 100
-10

-5
0

5

et
he

ta
do

t (
de

g/
se

c)

0 20 40 60 80 100

-10

0

10

ep
si

do
t (

de
g/

se
c)

0 20 40 60 80 100

-0.5
0

0.5

er
pm

time (sec)

118

 (a)

 (b)

Figure 38. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec: (a)
Desired and Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory

-400 -200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-200
0

200
400

600 -400
-200

0
200

400

0

50

100

150

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

119

 (a)

 (b)

Figure 39. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec: (a)
Desired and Actual Position and Heading; (b) Desired and Actual
Velocity in Body Frame

0 50 100 150
-400
-200

0
200
400

x
(ft

)

Desired
Actual

0 50 100 150
0

200

400

y
(ft

)

0 50 100 150
-62

-60

-58

z
(ft

)

0 50 100 150
0

100
200
300

ps
i (

de
g)

time (sec)

0 50 100 150

0

10

20

U
 (f

t/s
ec

)

Desired
Actual

0 50 100 150
-2
0
2
4
6

V
 (f

t/s
ec

)

0 50 100 150
-4

-2

0

2

W
 (f

t/s
ec

)

time (sec)

120

 (a)

 (b)

Figure 40. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec: (a)
Position and Heading Errors; (b) Velocity Errors in Body Frame

0 50 100 150
-10
-5
0
5

ex
 (f

t)

0 50 100 150

-5

0

5
ey

 (f
t)

0 50 100 150
-2

0

2

ez
 (f

t)

0 50 100 150
-5
0
5

10
15

eP
si

 (d
eg

)

time (sec)

0 50 100 150

-5

0

5

eU
 (f

t/s
ec

)

0 50 100 150

-6
-4
-2
0
2

eV
 (f

t/s
ec

)

0 50 100 150
-2

0

2

4

eW
 (f

t/s
ec

)

time (sec)

121

 Figure 41. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
Actuator Commands

0 50 100 150

-0.4

-0.2

th
ro

ttl
eL

ev
er

0 50 100 150
-0.8
-0.6
-0.4
-0.2

co
lle

ct
iv

e

0 50 100 150

-0.1
0

0.1

pi
tc

hS
tic

k

0 50 100 150

-0.1
0

0.1

ro
llS

tic
k

0 50 100 150
-0.2
-0.1

0

time (sec)

pe
da

l

122

 Figure 42. Software in the Loop Simulation Results for a Smooth Box at 20ft/sec:
Plant Model Errors for Velocity, Euler Angle Rates and Main Rotor
RPM

0 50 100 150

-0.05

0

0.05
eV

x
(ft

/s
ec

)

0 50 100 150
-0.1

-0.05
0

0.05

eV
y

(ft
/s

ec
)

0 50 100 150
-0.02

0
0.02
0.04

eV
z

(ft
/s

ec
)

0 50 100 150
-10

0

10

ep
hi

do
t (

de
g/

se
c)

0 50 100 150

-5

0

5

et
he

ta
do

t (
de

g/
se

c)

0 50 100 150
-10

0

10

ep
si

do
t (

de
g/

se
c)

0 50 100 150
-0.5

0

0.5

er
pm

time (sec)

123

8.5 Flight Test Results

The same flight segments tested in software in the loop simulation were tried in

actual flight. The flight test was performed on April 13, 2004 at the McKenna test range

of Fort Benning, Georgia. At the moment of the test the wind was at 20mph (32ft/sec)

from the West gusting to 28mph (45ft/sec). These gusty conditions were difficult to

handle by the adaptive mode transition controller. Results are presented for the flight

segments as follows:

• Hover pointing North. Results for this flight test are shown in Figures 43 to

47.

• Hover pointing North with heading changes to point East, West, and South.

This test was interrupted when the vehicle started pointing to the wind (West),

given that the vehicle was pitching too much - it is believed this was caused

by the wind. Results for this flight test are shown in Figures 48 to 52.

• Hover - flight forward at 20ft/sec - hover – flight backward at 20ft/sec –

hover. Results for this flight test are shown in Figures 53 to 57.

• A smooth box at 20ft/sec - move 400ft North, then move 400ft East, then

move 800ft South, then move 400ft west, and finally move to initial position.

This test was not completed. The wind made difficult for the controller to

keep the vehicle following the desired trajectory. At some point, when the

vehicle started pointing to the wind, the collective saturated and the

longitudinal cyclic also saturated. Given that the adaptive mode transition

controller does not have implemented any protection against saturation, it lost

124

control of the vehicle at that moment and the safety pilot took over to recover

the vehicle.

The same performance metrics used for the software in the loop simulation were

computed for the flight test and the results are presented in Table 2.

Table 2. Performance Metrics for Flight Test

Flight Segment

Mean
Magnitude
of
Position
Error
(ft)

Max
Magnitude
of
Position
Error
(ft)

Mean
Magnitude
of
Heading
Error
(deg)

Max
Magnitude
of
Heading
Error
(deg)

Hover 10.7964 25.3326 5.5706 18.4194

Hover with heading changes 13.5464 25.3103 7.1445 32.4452

Hover - flight forward at 20ft/sec -
hover – flight backward at 20ft/sec –
hover

16.9902 45.4923 7.9236 25.5664

As it seen from the results, the tracking performance was not so good for this

flight test. The reason for this is that the integral control was disabled almost all the time

due to some logic in the Adaptive Mode Transition Control that was enabled to

synchronize the integral control with the automatic trimming mechanism. When this logic

is activated, the integral control is active only when the automatic trimming is enabled,

that is, when the vehicle is in steady flight conditions. At the moment of the test, the

gusty conditions made the vehicle move a lot so the conditions for automatic trimming

were not met. However, the controller was able to keep the attitude of the vehicle within

125

reasonable values most of the time. The best results for this flight test were obtained for

the flight segment in which the vehicle flew forward and backwards at 20ft/sec.

126

 (a)

 (b)

Figure 43. Flight Test Results for Hover: (a) Desired and Actual 2D Trajectory; (b)
Desired and Actual 3D Trajectory

-160 -140 -120 -100 -80 -60

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-140
-120

-100
-80

-60
-120

-100
-80

-60
-40

100

150

200

250

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

127

 (a)

 (b)

Figure 44. Flight Test Results for Hover: (a) Desired and Actual Position and
Heading; (b) Desired and Actual Velocity in Body Frame

0 10 20 30 40 50 60

-100

-80

x
(ft

)

Desired
Actual

0 10 20 30 40 50 60

-115
-110
-105

y
(ft

)

0 10 20 30 40 50 60
-154
-152
-150
-148
-146

z
(ft

)

0 10 20 30 40 50 60

-10
0

10

ps
i (

de
g)

time (sec)

0 10 20 30 40 50 60
-10

0

10

U
 (f

t/s
ec

)

Desired
Actual

0 10 20 30 40 50 60
-4
-2
0
2
4

V
 (f

t/s
ec

)

0 10 20 30 40 50 60
-4
-2

0
2
4

W
 (f

t/s
ec

)

time (sec)

128

 (a)

 (b)

Figure 45. Flight Test Results for Hover: (a) Position and Heading Errors; (b)
Velocity Errors in Body Frame

0 10 20 30 40 50 60

-10
0

10
20

ex
 (f

t)

0 10 20 30 40 50 60

-5
0
5

ey
 (f

t)

0 10 20 30 40 50 60

-4
-2
0
2
4

ez
 (f

t)

0 10 20 30 40 50 60
-10

0
10

eP
si

 (d
eg

)

time (sec)

0 10 20 30 40 50 60
-10

0

10

eU
 (f

t/s
ec

)

0 10 20 30 40 50 60
-4
-2
0
2
4

eV
 (f

t/s
ec

)

0 10 20 30 40 50 60
-4
-2
0

2
4

eW
 (f

t/s
ec

)

time (sec)

129

Figure 46. Flight Test Results for Hover: Actuator Commands

0 10 20 30 40 50 60
-0.6
-0.4
-0.2

0

th
ro

ttl
eL

ev
er

0 10 20 30 40 50 60
-1

-0.5
0

0.5

co
lle

ct
iv

e

0 10 20 30 40 50 60
-0.4
-0.2

0
0.2

pi
tc

hS
tic

k

0 10 20 30 40 50 60
-0.4
-0.2

0
0.2

ro
llS

tic
k

0 10 20 30 40 50 60
0.3
0.4
0.5
0.6
0.7

time (sec)

pe
da

l

130

Figure 47. Flight Test Results for Hover: Plant Model Errors for Velocity, Euler
Angle Rates and Main Rotor RPM

0 10 20 30 40 50 60

-0.1

0

0.1

eV
x

(ft
/s

ec
)

0 10 20 30 40 50 60
-0.2

0

0.2

eV
y

(ft
/s

ec
)

0 10 20 30 40 50 60
-0.2

0

0.2

eV
z

(ft
/s

ec
)

0 10 20 30 40 50 60

-10
0

10
20

ep
hi

do
t (

de
g/

se
c)

0 10 20 30 40 50 60

-10

0

10

et
he

ta
do

t (
de

g/
se

c)

0 10 20 30 40 50 60

-10
0

10
20

ep
si

do
t (

de
g/

se
c)

0 10 20 30 40 50 60

-5

0

5

er
pm

time (sec)

131

 (a)

 (b)

Figure 48. Flight Test Results for Hover with Heading Changes: (a) Desired and
Actual 2D Trajectory; (b) Desired and Actual 3D Trajectory

-160 -140 -120 -100 -80 -60 -40
-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-140
-120

-100
-80

-60 -120
-100

-80
-60

-40

50

100

150

200

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

132

 (a)

 (b)

Figure 49. Flight Test Results for Hover with Heading Changes: (a) Desired and
Actual Position and Heading; (b) Desired and Actual Velocity in Body
Frame

0 10 20 30 40 50 60
-100

-80

x
(ft

)

Desired
Actual

0 10 20 30 40 50 60
-120

-100

y
(ft

)

0 10 20 30 40 50 60

-155
-150
-145

z
(ft

)

0 10 20 30 40 50 60
-100

0

100

ps
i (

de
g)

time (sec)

0 10 20 30 40 50 60
-10

0

10

20

U
 (f

t/s
ec

) Desired
Actual

0 10 20 30 40 50 60

-5

0

5

V
 (f

t/s
ec

)

0 10 20 30 40 50 60
-4
-2
0
2
4
6

W
 (f

t/s
ec

)

time (sec)

133

 (a)

 (b)

Figure 50. Flight Test Results for Hover with Heading Changes: (a) Position and
Heading Errors; (b) Velocity Errors in Body Frame

0 10 20 30 40 50 60

-10
0

10

ex
 (f

t)

0 10 20 30 40 50 60

-20
-10

0
10

ey
 (f

t)

0 10 20 30 40 50 60

-5
0
5

ez
 (f

t)

0 10 20 30 40 50 60
-30
-20
-10

0

eP
si

 (d
eg

)

time (sec)

0 10 20 30 40 50 60
-20

-10

0

10

eU
 (f

t/s
ec

)

0 10 20 30 40 50 60
-5

0

5

eV
 (f

t/s
ec

)

0 10 20 30 40 50 60
-6
-4
-2
0
2
4

eW
 (f

t/s
ec

)

time (sec)

134

Figure 51. Flight Test Results for Hover with Heading Changes: Actuator
Commands

0 10 20 30 40 50 60
-0.6
-0.4
-0.2

th
ro

ttl
eL

ev
er

0 10 20 30 40 50 60

-1
0
1

co
lle

ct
iv

e

0 10 20 30 40 50 60
-0.4
-0.2

0
0.2
0.4

pi
tc

hS
tic

k

0 10 20 30 40 50 60
-0.4
-0.2

0
0.2
0.4

ro
llS

tic
k

0 10 20 30 40 50 60

0
0.5

1

time (sec)

pe
da

l

135

Figure 52. Flight Test Results for Hover with Heading Changes: Plant Model
Errors for Velocity, Euler Angle Rates and Main Rotor RPM

0 10 20 30 40 50 60
-0.2

0
0.2
0.4
0.6

eV
x

(ft
/s

ec
)

0 10 20 30 40 50 60
-0.5

0

0.5

eV
y

(ft
/s

ec
)

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

eV
z

(ft
/s

ec
)

0 10 20 30 40 50 60

-20
-10

0
10

ep
hi

do
t (

de
g/

se
c)

0 10 20 30 40 50 60

-10
0

10
20

et
he

ta
do

t (
de

g/
se

c)

0 10 20 30 40 50 60

-10
0

10
20

ep
si

do
t (

de
g/

se
c)

0 10 20 30 40 50 60

-5

0

5

er
pm

time (sec)

136

 (a)

 (b)

Figure 53. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover – Flight
Backward at 20ft/sec – Hover: (a) Desired and Actual 2D Trajectory; (b)
Desired and Actual 3D Trajectory

-500 -400 -300 -200 -100 0 100 200 300

-100

0

100

200

300

400

500

y = East (ft)

x
=

N
or

th
 (f

t)

Desired
Actual

-400

-200

0

200
0

200

400

50

100

150

200

North = x (ft)
East = y (ft)

al
tit

ud
e

=
-z

 (f
t)

Desired
Actual

137

 (a)

 (b)

Figure 54. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: (a) Desired and Actual Position and
Heading; (b) Desired and Actual Velocity in Body Frame

0 20 40 60 80 100

0
200
400

x
(ft

)

Desired
Actual

0 20 40 60 80 100
-120
-110
-100

y
(ft

)

0 20 40 60 80 100

-150

-140

z
(ft

)

0 20 40 60 80 100

-20

0

20

ps
i (

de
g)

time (sec)

0 20 40 60 80 100

-20

0

20

U
 (f

t/s
ec

) Desired
Actual

0 20 40 60 80 100

-5

0

5

V
 (f

t/s
ec

)

0 20 40 60 80 100

-5

0

5

W
 (f

t/s
ec

)

time (sec)

138

 (a)

 (b)

Figure 55. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: (a) Position and Heading Errors;
(b) Velocity Errors in Body Frame

0 20 40 60 80 100
-40
-20

0
20

ex
 (f

t)

0 20 40 60 80 100

-10

0
10

ey
 (f

t)

0 20 40 60 80 100
-10
-5
0
5

ez
 (f

t)

0 20 40 60 80 100
-20

0

20

eP
si

 (d
eg

)

time (sec)

0 20 40 60 80 100

-20

0

20

eU
 (f

t/s
ec

)

0 20 40 60 80 100
-5

0

5

eV
 (f

t/s
ec

)

0 20 40 60 80 100

-5

0

5

eW
 (f

t/s
ec

)

time (sec)

139

Figure 56. Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: Actuator Commands

0 20 40 60 80 100

-0.6
-0.4
-0.2

th
ro

ttl
eL

ev
er

0 20 40 60 80 100
-2
-1
0

co
lle

ct
iv

e

0 20 40 60 80 100
-0.4
-0.2

0
0.2
0.4

pi
tc

hS
tic

k

0 20 40 60 80 100
-0.4
-0.2

0
0.2
0.4

ro
llS

tic
k

0 20 40 60 80 100

0.5

1

time (sec)

pe
da

l

140

 Figure 57.Flight Test Results for Hover - Flight Forward at 20ft/sec - Hover –
Flight Backward at 20ft/sec – Hover: Plant Model Errors for Velocity,
Euler Angle Rates and Main Rotor RPM

0 20 40 60 80 100

-0.5

0

0.5
eV

x
(ft

/s
ec

)

0 20 40 60 80 100

-0.2
0

0.2
0.4

eV
y

(ft
/s

ec
)

0 20 40 60 80 100
-0.4
-0.2

0
0.2
0.4

eV
z

(ft
/s

ec
)

0 20 40 60 80 100
-20

0
20

40

ep
hi

do
t (

de
g/

se
c)

0 20 40 60 80 100
-20

0

20

et
he

ta
do

t (
de

g/
se

c)

0 20 40 60 80 100
-20

0

20

40

ep
si

do
t (

de
g/

se
c)

0 20 40 60 80 100
-10

-5
0
5

er
pm

time (sec)

141

CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

In this research, a new approach to the adaptive mode transition control problem

and a hierarchical architecture to implement it were developed. The architecture was

applied to the control of a helicopter UAV. A strict sequence of software in the loop

simulations, hardware in the loop simulations and flight tests were used for validation and

verification of the algorithms implemented.

The main contributions of this research are:

• Development of a hierarchical architecture for the implementation of the adaptive

mode transition control, flexible enough to be able to accommodate future

enhancements and more intelligence at the highest level of the hierarchy.

• Development of a new approach to the adaptive mode transition control problem

addressing main concerns from previous accomplishments in this area.

• Exploitation of new software technologies including the OCP and the hybrid

controls API to show how they enable the implementation of advanced control

algorithms for UAVs.

• Implementation of the architecture and verification of its performance in software

in the loop simulation, hardware in the loop simulation and through flight testing.

Some open issues related to this work that need to be addressed by further

research. follow:

142

• Development of a theoretical framework for the adaptive mode transition control

methodology. It is anticipated that the theory of linear parameter varying systems

could help to address this subject.

• Based on the framework mentioned above it would be possible to improve the

adaptive mode transition control methodology to guarantee the robust stability

and performance of the controller.

• Enhancements in the higher level of the adaptive mode transition control

architecture to enable intelligent mission planning and coordination with other

agents in a multi-agent system.

• Application of the adaptive mode transition control architecture for the control of

other kinds of large scale complex systems like industrial processes.

• Development of an adaptive mode transition control system with dynamic

structure used to implement reconfigurable controllers. This could have

applications in the area of fault tolerant control.

• Integration of the adaptive mode transition control architecture with schemes like

envelope reshaping and protection to guarantee that the control does not exceed

the safety operational limits of the dynamic system under control.

• Control of vehicles with changing center of gravity or mass.

143

PUBLICATIONS

G. Vachtsevanos, L. Tang, G. Drozeski, and L. Gutierrez, “Intelligent Control of
Unmanned Aerial Vehicles for Improved Autonomy and Reliability,” submitted
to 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal,
July 5-7 2004.

L. B. Gutierrez, G. Vachtsevanos, and B. Heck, “A Hierarchical Architecture for the
mode transition control of unmanned aerial vehicles,” in Proceedings of the AIAA
Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas,
August 11-14, 2003.

L. B. Gutierrez, G. Vachtsevanos, and B. Heck, "A Hierarchical/Intelligent Control
Architecture for Unmanned Aerial Vehicles," in Proceedings of the 11th
Mediterranean Conference on Control and Automation MED'03, Rhodes, Greece,
June 18-20, 2003.

L. B. Gutierrez, G. Vachtsevanos, and B. Heck, “An approach to the adaptive mode
transition control of unmanned aerial vehicles,” in Proceedings of the 2003
American Control Conference, Denver, Colorado, June 4-6, 2003.

L. B. Gutierrez, G. Vachtsevanos, and B. Heck, "A Hierarchical/Intelligent Control
Architecture for Unmanned Aerial Vehicles," in Proceedings of the 21st Digital
Avionics Systems Conference, (Irvine, CA), pp. 8.B.3-1/8.B.3-10, October 27-31,
2002.

144

REFERENCES

[1] J. S. A. Shamma, M., "Analysis of gain scheduled control for nonlinear plants,"
IEEE Transactions on Automatic Control, vol. 35, pp. 898-907, 1990.

[2] J. S. A. Shamma, M., "Gain scheduling: potential hazards and possible remedies,"
IEEE Control Systems Magazine, vol. 12, pp. 101-107, 1992.

[3] R. A. Nichols, R. T. Reichert, and W. J. Rugh, "Gain scheduling for H-infinity
controllers: a flight control example," IEEE Transactions on Control Systems
Technology, vol. 1, pp. 69-79, 1993.

[4] W. J. Rugh, "Analytical framework for gain scheduling," IEEE Control Systems
Magazine, vol. 11, pp. 79-84, 1991.

[5] R. A. Hyde and K. Glover, "The application of scheduled H-infinity controllers to
a VSTOL aircraft," IEEE Transactions on Automatic Control, vol. 38, pp. 1021-
1039, 1993.

[6] D. J. Leith and H. E. Leithead, "On incorporating non-equilibrium plant dynamics
into gain-scheduling design," in Proc. UKACC International Conference on
Control, 1998.

[7] D. J. Stilwell and W. J. Rugh, "Interpolation of observer state feedback controllers
for gain scheduling," IEEE Transactions on Automatic Control, vol. 44, pp. 1225-
1229, 1999.

[8] P. Apkarian, P. Gahinet, and G. Becker, "Self-scheduled H-infinity Control of
Linear Parameter-varying Systems: a Design Example," Automatica, vol. 31, pp.
1251-1261, 1995.

[9] P. Apkarian and P. Gahinet, "A convex characterization of gain-scheduled H-
infinity controllers," IEEE Transactions on Automatic Control, vol. 40, pp. 853-
864, 1995.

[10] P. Apkarian and R. J. Adams, "Advanced gain-scheduling techniques for
uncertain systems," IEEE Transactions on Control Systems Technology, vol. 6,
pp. 21-32, 1998.

[11] A. Packard, K. Zhou, P. Pandey, and G. Becker, "A collection of robust control
problems leading to LMIs," in Proc. 30th IEEE Conference on Decision and
Control, 1991.

[12] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
in systems and control theory, vol. 15. Philadelphia: SIAM, 1994.

145

[13] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox: The
MathWorks, Inc., 1995.

[14] P. Bergsten, M. Persson, and B. Iliev, "Fuzzy gain scheduling for flight control,"
in Proc. 26th Annual Conference of the IEEE Industrial Electronics Society,
2000.

[15] P. Korba, R. Babuska, H. B. Verbruggen, and P. M. Frank, "Fuzzy gain
scheduling: controller and observer design based on lyapunov method and convex
optimization," IEEE Transactions on Fuzzy Systems, vol. 11, pp. 285-298, 2003.

[16] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron, "Flight test and simulation
results for an autonomous aerobatic helicopter," in Proc. 21st Digital Avionics
Systems Conference, 2002.

[17] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron, "Control Logic for Automated
Aerobatic Flight of Miniature Helicopter," in Proc. AIAA Guidance, Navigation
and Control Conference, 2002.

[18] B. Mettler, V. Gavrilets, E. Feron, and T. Kanade, "Dynamic Compensation for
High-Bandwidth Control of Small-Scale Helicopter," in Proc. American
Helicopter Society Test and Evaluation Technical Specialists Meeting, 2002.

[19] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, "Variable structure control of
nonlinear multivariable systems: a tutorial," Proceedings of the IEEE, vol. 76, pp.
212-232, 1988.

[20] K. D. Young, V. I. Utkin, and U. Ozguner, "A control engineer's guide to sliding
mode control," IEEE Transactions on Control Systems Technology, vol. 7, pp.
328-342, 1999.

[21] J. Guldner and V. I. Utkin, "The chattering problem in sliding mode systems," in
Proc. Fourteenth International Symposium on Mathematical Theory of Networks
and Systems, Perpignan, France, 2000.

[22] W.-S. Lin and C.-S. Chen, "Robust adaptive sliding mode control using fuzzy
modelling for a class of uncertain MIMO nonlinear systems," in IEE
Proceedings-Control Theory and Applications, vol. 149, 2002, pp. 193-201.

[23] C. W. Tao, M.-L. Chan, and T.-T. Lee, "Adaptive fuzzy sliding mode controller
for linear systems with mismatched time-varying uncertainties," IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 33, pp. 283-294,
2003.

[24] K.-K. D. Young, "Design of variable structure model-following control systems,"
IEEE Transactions on Automatic Control, vol. AC-23, pp. 1079-1085, 1978.

146

[25] A. J. Calise and F. Kramer, "A variable structure approach to robust control of
VTOL aircraft," in Proc. 1982 American Control Conference, Arlington, VA,
USA, 1982.

[26] K.-K. D. Young, "Controller design for a manipulator using theory of variable
structure systems," IEEE Transactions on Systems, Man and Cybernetics, vol.
SMC-8, pp. 101-109, 1978.

[27] J. J. Slotine and S. S. Sastry, "Tracking control of non-linear systems using
sliding surfaces, with application to robot manipulators," International Journal of
Control, vol. 38, pp. 465-492, 1983.

[28] S. N. Singh, M. Pachter, P. Chandler, S. Banda, S. Rasmussen, and C.
Schumacher, "Input-output invertibility and sliding mode control for close
formation flying of multiple UAVs," International Journal of Robust and
Nonlinear Control, vol. 10, pp. 779-797, 2000.

[29] G. A. Dumont and M. Huzmezan, "Concepts, methods and techniques in adaptive
control," in Proc. 2002 American Control Conference, 2002.

[30] N. M. Filatov and H. Unbehauen, "Survey of adaptive dual control methods," IEE
Proceedings-Control Theory and Applications, vol. 147, pp. 118-128, 2000.

[31] B. Wittenmark, "Adaptive Dual Control Methods: An Overview," in Proc. 5th
IFAC Symposium on Adaptive Systems in Control and Signal Processing,
Budapest, Hungary, 1995.

[32] P. R. Wahi, R.; Chowdhury, F.N., "A survey of recent work in adaptive flight
control," in Proc. 33rd Southeastern Symposium on System Theory, 2001.

[33] A. J. Calise and R. T. Rysdyk, "Nonlinear adaptive flight control using neural
networks," IEEE Control Systems Magazine, vol. 18, pp. 14-25, 1998.

[34] E. N. Johnson, A. J. Calise, H. A. El-Shirbiny, and R. T. Rysdyk, "Feedback
Linearization with Neural Network Augmentation applied to X-33 Attitude
Control," in Proc. AIAA Guidance, Navigation and Control Conference, Denver,
CO, 2000.

[35] R. T. Rysdyk and A. J. Calise, "Adaptive nonlinear control for tiltrotor aircraft,"
in Proc. 1998 IEEE International Conference on Control Applications, 1998.

[36] A. J. Calise, S. Lee, and M. Sharma, "Direct Adaptive Reconfigurable Control of
a Tailless Fighter Aircraft," in Proc. AIAA Guidance, Navigation and Control
Conference, Boston, MA, 1998.

[37] A. Verma, K. Subbarao, and J. L. Junkins, "A novel trajectory tracking
methodology using structured adaptive model inversion for uninhabited aerial
vehicles," in Proc. 2000 American Control Conference, Chicago, IL, 2000.

147

[38] H. Nakanishi and K. Inoue, "Development of autonomous flight control systems
for unmanned helicopter by use of neural networks," in Proc. 2002 International
Joint Conference on Neural Networks, 2002.

[39] S. K. Kannan and E. N. Johnson, "Adaptive trajectory based control for
autonomous helicopters," in Proc. 21st Digital Avionics Systems Conference,
2002, 2002.

[40] S. K. Kannan and E. N. Johnson, "Adaptive Flight Control for an Autonomous
Unmanned Helicopter," in Proc. AIAA Guidance, Navigation and Control
Conference, 2002.

[41] E. N. Johnson and A. J. Calise, "Pseudo-Control Hedging: A New Method for
Adaptive Control," in Proc. Workshop on Advances in Guidance and Control
Technology, Arsenal, Alabama, 2000.

[42] E. N. Johnson and A. J. Calise, "Neural network adaptive control of systems with
input saturation," in Proc. 2001 American Control Conference, 2001.

[43] K. S. Narendra and J. Balakrishnan, "Adaptive control using multiple models,"
IEEE Transactions on Automatic Control, vol. 42, pp. 171-187, 1997.

[44] J. D. Boskovic and R. K. Mehra, "Stable multiple model adaptive flight control
for accommodation of a large class of control effector failures," in Proc. 1999
American Control Conference, 1999.

[45] F. Rufus, G. Vachtsevanos, and B. Heck, "Real-time adaptation of mode
transition controllers," Journal of Guidance Control and Dynamics, vol. 25, pp.
167-175, 2002.

[46] F. Rufus, G. Vachtsevanos, and B. Heck, "Adaptive Mode Transition Control of
Nonlinear Systems Using Fuzzy Neural Networks," in Proc. 8th IEEE
Mediterranean Conference on Control and Automation, Patras, Greece, 2000.

[47] F. Rufus, B. Heck, and G. Vachtsevanos, "Software-enabled adaptive mode
transition control for autonomous unmanned vehicles," in Proc. 19th Digital
Avionics Systems Conferences, 2000.

[48] F. Rufus, "Intelligent approaches to mode transition control," in Electrical and
Computer Engineering. Atlanta: Georgia Institute of Technology, 2000.

[49] J. B. Rawlings, "Tutorial overview of model predictive control," IEEE Control
Systems Magazine, vol. 20, pp. 38-52, 2000.

[50] D. Q. M. Mayne, H., "Receding horizon control of nonlinear systems," IEEE
Transactions on Automatic Control, vol. 35, pp. 814-824, 1990.

148

[51] Y. L. Huang, H. H. Lou, J. P. Gong, and T. F. Edgar, "Fuzzy model predictive
control," IEEE Transactions on Fuzzy Systems, vol. 8, pp. 665-678, 2000.

[52] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules, "Nonlinear model
predictive control using neural networks," IEEE Control Systems Magazine, vol.
20, pp. 53-62, 2000.

[53] H. J. Kim, D. H. Shim, and S. Sastry, "Nonlinear model predictive tracking
control for rotorcraft-based unmanned aerial vehicles," in Proc. 2002 American
Control Conference, 2002.

[54] R. Giroux, R. Gourdeau, M. Pelletier, and R. Hurteau, "A linear quadratic tracker
for VTOL-UAV trajectory control with multivariable constraints," in Proc. AIAA
Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2000.

[55] J. S. Jang and C. J. Tomlin, "Autopilot design for the Stanford DragonFly UAV -
Validation through hardware-in-the-loop simulation," in Proc. AIAA Guidance,
Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001.

[56] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos, "Software technology for
implementing reusable, distributed control systems," IEEE Control Systems
Magazine, vol. 23, pp. 21-35, 2003.

[57] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos, "Software enabled control:
background and motivation," in Proc. 2001 American Control Conference, 2001.

[58] D. P. Schrage and G. Vachtsevanos, "Software-enabled control for intelligent
UAVs," in Proc. 1999 IEEE International Symposium on Computer Aided
Control System Design, 1999.

[59] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J. V. R. Prasad, D. Schrage,
and G. Vachtsevanos, "An open platform for reconfigurable control," IEEE
Control Systems Magazine, vol. 21, pp. 49-64, 2001.

[60] L. Wills, S. Kannan, B. Heck, G. Vachtsevanos, C. Restrepo, S. Sander, D.
Schrage, and J. V. R. Prasad, "An open software infrastructure for reconfigurable
control systems," in Proc. 2000 American Control Conference, 2000.

[61] L. Wills, S. Sander, S. Kannan, A. Kahn, J. V. R. Prasad, and D. Schrage, "An
open control platform for reconfigurable, distributed, hierarchical control
systems," in Proc. 19th Digital Avionics Systems Conferences, 2000.

[62] J. L. Paunicka, B. R. Mendel, and D. E. Corman, "The OCP - an open middleware
solution for embedded systems," in Proc. 2001 American Control Conference,
2001.

149

[63] J. L. Paunicka, D. E. Corman, and B. R. Mendel, "A CORBA-based middleware
solution for UAVs," in Proc. Fourth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing. ISORC - 2001, 2001.

[64] E. Frazzoli, M. A. Dahleh, and E. Feron, "Robust hybrid control for autonomous
vehicle motion planning," in Proc. 39th IEEE Conference on Decision and
Control, 2000.

[65] J. Theocharis and G. Vachtsevanos, "Adaptive fuzzy neural networks as
identifiers of discrete-time nonlinear dynamic systems," Journal of Intelligent and
Robotic Systems: Theory and Applications, vol. 17, pp. 119-168, 1996.

[66] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of Dynamic
Systems, 3rd ed. Menlo Park, CA: Addison Wesley, 1998.

[67] L. B. Gutierrez, G. Vachtsevanos, and B. Heck, "A Hierarchical Architecture for
the mode transition control of unmanned aerial vehicles," in Proc. AIAA
Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 2003.

[68] J. Bryson, Arthur E., Dynamic Optimization. Menlo Park, CA: Addison Wesley,
1999.

[69] M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Heck, and G. Vachtsevanos,
"Rapid prototyping of transition management code for reconfigurable control
systems," in Proc. 13th IEEE International Workshop on Rapid System
Prototyping, 2002.

[70] M. Guler, S. Clements, L. Wills, B. Heck, and G. Vachtsevanos, "Generic
transition management for reconfigurable hybrid control systems," in Proc. 2001
American Control Conference, 2001.

[71] M. Guler, S. Clements, L. M. Wills, B. S. Heck, and G. J. Vachtsevanos,
"Transition management for reconfigurable hybrid control systems," IEEE
Control Systems Magazine, vol. 23, pp. 36-49, 2003.

[72] E. N. Johnson and S. Mishra, "Flight Simulation for the Development of an
Experimental UAV," in Proc. AIAA Modeling and Simulation Technology
Conference, Monterey, CA, 2002.

