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Abstract-- In this paper, a hierar chical/intelligent control
architecturefor an unmanned aerial vehicle (UAV) is
proposed. Thearchitecture consists of three levels: the highest
level is occupied by mission planning routines. At thislevel,
information about the way pointsthe vehicle must follow is
available and | ogic-based routines decide upon mission tasks
while maintaining physical constraints and gener ate the task
queue. The mid-level controller coordinatesthetask execution
while a trajectory generation component receives the task
infor mation from the high-level module and provides set
pointsfor low-level stabilizing controllerswhose function isto
maintain the vehiclein a stable state and to follow accur ately
the commanded trajectory. An adaptive mode transition
control algorithm resides also at the lowest level of the

hierar chy consisting of two components: a mode transition
controller and the accompanying adaptation mechanism. The
adaptation routine may be turned on only when needed. The
transitioning algorithm oper atesin real -time while adapting
on-line to disturbances and other external inputs. This
intelligent/hierarchical architectureisbeingimplemented
using a novel softwar e infrastructure called Open Control
Platform, which facilitates inter oper ability, plug-and-play and
other functionalities. Simulation resultsillustrate the
robustness and effectiveness of the proposed scheme. An
actual flight demonstration is planned for the near futureas
part of a DARPA sponsored research program.

Index Terms— UAV, hierarchical control, intelligent control,
mission planning, mode transition control

I. INTRODUCTION

Control of Autonomous Aerial Vehicles presents unique
challenges not only in the design of control algorithms, but
also in the strategies and methodol ogies used to integrate
and implement those algorithms on the actual vehicles.
These challenges appear also in other complex system
applications, so new software enabled control technologies
are being developed to address them [1]. In this paper, an
intelligent/hierarchical control architecture for unmanned
aeria vehicles (UAV) is proposed. The main objective of
this architecture is to improve the degree of
autonomy/intelligence of the UAV and its performance
under uncertain conditions, for instance when external
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perturbations are present. The architecture is based on
concepts developed in [2,3,4,5] where the adaptive mode
transition control scheme was first introduced. This paper
suggests a hew approach to the adaptive mode transition
control problem and introduces a hierarchical architecture
to implement it. In this new approach, desired transition
models are replaced by the middle level trajectory
generation and the high level mission planning components.
The architecture is flexible enough to enable the future
integration of additional intelligent attributes at the high
level. A new adaptive mode transition control scheme and
its associated algorithms are discussed. The algorithms have
been implemented and tested using the Open Control
Platform (OCP) - a new open software infrastructure
especially developed for the implementation of complex
reconfigurable control systems such asUAV’s[6,7,8].

Il. OVERAL ARCHITECTURE FOR CONTROL OF UNMANNED
AERIAL VEHICLES

The proposed architecture for the control of UAV’ s consists
of ahierarchy of three levelsthat are described below
(Figure1).

A. HighLevel: Mission Planning

The mission planning component translates ahigh level
representation of the mission into alow-level task queue
and coordinates the execution of low-level tasks with the
trajectory generation component at the middle level. The
mission can be established as a sequence of actionsto be
executed, for instance: fly to away point and hover there,
fly to away point at certain speed, keep the same velocity
and heading for a certain period of time, etc. Cinematic
constraints like maximum speed and acceleration are
specified and can be changed for each section of the
mission.

Every action is specified through a high level command
given to the mission planning module. When a new action
issuggested, the sequence of tasks that must be performed
are generated and added to the tail end of the task queue.
Each task represents a maneuver that takes the vehicle from
the actual stateto atarget state and includes the following
information:



Timeto complete the task

Target position

Target direction of the flight path for this task
Target heading angle

Heading mode: specifies whether the value of the
heading is absolute or relative to the direction of the
flight path for coordinated flight

Target speed

M aximum acceleration
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A mission may be completely specified beforeit is
executed but may also be modified, or re-planned or
expanded at run time. This feature enables the modification
or extension of the mission at run time. Re-planning is
particularly important for the future incorporation of
obstacle and collision avoidance algorithms.

At run time, the mission planning component coordinates
the execution of the low-level tasks with the trajectory
generation component at the middle level in the following
way: first, the mission planning component takes the task at
the head of the task queue, removesit from the queue and
sends the task information to the trajectory generation
component; then, the trajectory generation component
executes the task and, when completed, it sends asignal
back to the mission planning component indicating that the
last task has been completed; finally, when the mission
planning component receives the signal, takes the next task
from the head of the task queue and the cycleisrepeated
until no tasks remain in the task queue.

B. MiddleLevel: Trajectory Generation

The trajectory generation component generates the set
points required for the low-level controllersto complete the
last task received from the mission planning module. When
the trajectory generation component receives the next task
information, it computes a 3D spline to generate a
continuous path linking the actual position with the target
position. At each sample time, the actual speed is evaluated
based on theinitial speed for the task, the final speed for the
task, and the maximum accel eration available according to
the curvature of the path at that time. Position and vel ocity
over the path are computed next using the spline
representation. A similar splineisused to represent the
heading of the vehicle while the heading is determined in
two ways according to the heading mode defined for the
task: either directly from the heading spline if the heading
mode is set to the absolute heading, or from a combination
of the heading spline and the heading computed from the
direction of the path, if the heading mode is set to the
coordinated heading. Also the heading rate is computed in a
consistent manner.

After generating the set points corresponding to the actual
sample time, the condition for completion of thetask is
checked and a comparison is made with the actual state of

the vehicle to determineif the task was completed
successfully or not. A signal is sent to the high level module
indicating the termination status of the task so that the next
one can be initiated.

C. Low-Level: Adaptive Mode Transition Control

The purpose of the low level controllersisto stabilize the
vehicle and force it to follow accurately the commanded
trajectory generated by the middle level. In this
architecture, anew approach to the adaptive mode
transition control isintroduced. The adaptive mode
transition control consists of the mode transition control
component and the adaptation mechanism component
(Figure 2). The following description refers to the case of a
rotary wing UAV.

1) Mode Transition Control Component

The mode transition control component consists of several
subcomponents: the local controllers (one for each local
mode), the active control models (one for each transition),
and the mode transition manager. The mode transition
manager decides which controller to use at agiven time (a
local controller or an active control model) based on the
actual state of the UAV. The mode transition control by
itself does not perform any adaptation.

In thisnew approach, the local controllers are of the
discrete time tracking variety running at afixed sample rate.
The control law for these controllersis given by:

u(k) = Ke(k) + Ui » (1)

where k representsthe discretetime, u(k) isthe actuator
command vector, (k) isthe error between the desired

state (set point) generated by the trajectory generation
component ( x, (k) ) and the actual state of the vehicle

obtained from on-board sensors ( x(k) ). The parameters
for local controller i arethe matrix gain K, , and thetrim
value of the actuator command u

trim,i *
The state of the vehicle is given by
x(k) =[x y,zf.qy .uv,wp,qr]",

where x, vy, z represent the position, f , q,y the
attitude, u, v, w thevelocity, and p, q, r theangular
rates.

A transformation is performed on  x(k) and x, (k) , before

the control algorithms are applied, to make them
independent of the actual heading of the vehicle. That is, if
y . istheactual value of the heading in x(k), then the

transformed val ues are obtained by
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After the transformation, the tracking error is given by
e(k) =x3(k)- x(k). (3

The actuator command vector is given by

u(k) =[throtleLever, pitchStick, rollStick, pedal] .

The design procedure for the local controllersisasfollows:
once the operating state of amode is decided, an
approximate model of the vehicleis linearized about that
state, then discretized., and alinear quadratic regulator is
computed for the matrix gain K, . When an approximate

model of the vehicleis not available, the linearized model
could be obtained from a Fuzzy Neural Net model trained
with input-output data from the actual vehicle in the same
way as with the active plant models to be discussed later.

The mode transition manager (MTM) coordinates the
transitionsin this new approach. Unlike [2,3,4,5] where the
transitions were pre-scheduled and a Mode Selector module
coordinated the transitions, the MTM coordinates the
transitions automatically in the new technique based on the
actual state of the vehicle. In order to accomplish thistask,
aMode Membership Function is defined for each local
mode and the MTM determines which local mode or
transition should be activated relying upon these constructs.

For loca mode i the Mode Membership Functionis
defined as

e (x m)T S[S; (x-m;)

m = )

where x isthe state of the vehicle, m isthe center
(operating state) of themode, and S, isa positive semi-

definite diagonal matrix whose elements represent the
inverse of the deviations for each component of x for that
mode.

To determine which mode is active, the MTM computes the
Mode Membership Functionsfor all local modes. If
m(x(k))® 0.5 for the actual state, then local mode | will

be active. Mode centers and deviations are defined so that
m(x(k))® 0.5 can bevalid for only one I. That way the

modes correspond to disjoint regions of the state space. If
m(x(k)) < 0.5 for al |, then the transition corresponding to

the two modes with the highest Mode Membership
Function values will be active. When alocal modeis active,
the corresponding local controller is used to compute the
control output whereas when atransition is active, the
corresponding ACM is used to compute the control output.

The active control models are in charge of the transitions
between local modes. The function of an active control
model (ACM) isto blend the outputs of the local controllers
corresponding to one transition in a smooth and stable way,
that is, the blending of the local controllers should not
deteriorate the overall performance of the closed loop
system. Every ACM islinked to the local controllers
corresponding to the transition, has access to their outputs,
and also includes a Fuzzy Neural Net (FNN) that generates
the blending gains to compute the control output. The FNN
has the same structure asin [2,3,4,5], but itslearning
capabilities have been improved via a new recursive least
squares training algorithm. The input of the FNN isthe
actual state of the vehicle, x(k), after the transformation
givenin (2). Therefore, the output of the [th ACM module
is determined from

blendingGains = FNN ., (X(k)),
u(k) = blendingGaing()u (k) + blendingGaing(2)u; (k), )

where FNN,,, represents the function implemented by
the FNN of the lth ACM, blendingGains is the output
vector of that FNN, and u, (k) and u; (k) represent the

control outputs of the local controllers corresponding to the
Ith ACM. The new approach differs from the one presented
in[2,3,4,5] inthat it uses scalar blending gains, whilein
[2,3,4,5] different blending gains are used for each
component of u(k) .

When atransition is set up, the FNN of the corresponding
ACM istrained off-line on the basis of an input-output data
set generated automatically from a hypothetical transition
trajectory from the center of the initial mode to the center of
the target mode. The state is taken from this trajectory and
the desired blending gains (desired outputs of the FNN) are
computed based on the Mode Membership Functions
generated by the mode transition manager. That is, given
that the state of the vehicleis x(k) at some point over this

hypothetical trajectory, and m and m; are the Mode

Membership Functions for the modes involved in the
transition from mode i to mode |, then the desired output

for the FNN at that point is
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Thus, the computation of an optimal trajectory for the given
transition isavoided at this stage. This new approach
assumes that the mode transition controller itself does not
determine the tragjectory for the given transition since the
trajectory generation component specifiesthe trajectory at
the middle level according to the tasks sent by the mission
planning component. The FNN of the ACM is adapted on-

line by the control adaptation mechanism, asis described in
the sequel.

Once the local modes are defined and the local controllers
are designed for each local mode, the transitions are
established viathe ACMsin the mode transition control
component and the corresponding active plant models,
which are incorporated into the adaptation mechanism.

2) Adaptation Mechanism Component

The adaptation mechanism component calls the adaptation
routines of the mode transition control and also includes the
active plant models (one for each transition), which serve as
partial models of the plant in the transitions. For each
transition thereisan ACM inthe MTC component and the
associated active plant model (APM) in the adaptation
mechanism component. The purpose of the APMsisto
serve as partial models of the plant in the transitions and
provide the sensitivity matrices required to adapt the
ACMs. Every APM includes a FNN that istrained to
represent the dynamics of the vehicle in the transition
region corresponding to that APM. Therefore, if the model
of the vehicleis given by

X(k +1) = f(x(k),u(k)) , with x(0)=x,, (6)
then, the FNN in the APM | istrained such that
FNN spy, (X(K), u(k)) » x(k +2) = f (x(k), u(k)) , (7)

given that transition | isactive. A recursive least squares

training method minimizes the approximation error in (7),
so this approximation is valid when enough input/output
dataare available to train the FNN.

Near the actual operating point, defined by the pair
(x(k),u(k)) = (x.,u,), alinearized model of the vehicleis

obtained from the FNN, that is

£ = Ik, u(k)
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Sensitivity matrices computed from (8) are used in the
control adaptation mechanism to adapt the ACMsasis
described below.

The plant adaptation mechanism is used to train the APMs.
When the vehicle isin atransition, the input/output
information from its sensorsis used by the plant adaptation
mechanism to train this model by calling the recursive least
squares training routine from the FNN. The plant adaptation
mechanism can be disabled at any time to free system
resources, if required. In that case, the last value of the
APM isused by the control adaptation mechanism to
compute the sensitivity matrices.

The control adaptation mechanism provides the adaptation
function to the ACMs. When an ACM is active and the
control adaptation mechanism is enabled, an optimization
routine is used to find the optimal control value at each time
step; the optimal blending gains that minimize the error
between the optimal control and the control produced by
the ACM are also computed. These optimal blending gains
constitute the desired outputs for the recursive least squares
training algorithm in the FNN, corresponding to that ACM,
whichisin turn called by the control adaptation
mechanism.

The optimization routine used to compute the optimal
control value uses afinite horizon optimal control
methodology; the latter is based on the linearized model of
the vehicle, which is obtained in turn from the sensitivity
matrices generated from the corresponding APM, asgiven
by (8) and (9). The objective of this optimal control
problem is to minimize the following performance index

0%

J=>a €"()Qe(i)+Du (HRDu() , (10)
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k

with Q3 0,R>0, subject to
Dx(i +1) = FDx(i) + Gbu(i) , (11

for i =k,k+1,...k+ N, with Dx(k)=Dx, , where



e(i) =Dx, (i) - Dx(i),
Dx, (i) = x,(i) - x. ,
Dx(i) = x(i) - x. ,and
Du(i) =u(i)- u. .

Thisisadiscrete linear quadratic soft terminal controller
problem [6]. Application of the optimization algorithm
givesthevalue of Du(k) which, inturn, is needed to

compute u’ (k) from u’(k) = u, + Du(k) . Thisisthe

optimal control value used to compute the desired blending
gains for the active control model.

The approach constraints the blending gains so the ACM
produces a convex combination of the outputs of the local
controllers and guarantees smooth transitions. That is, given
the outputs of the local controllers corresponding to the
ACM, u (k) and u;(k), the objective isto minimize the

magnitude of the error
||u* (k) - desiredGains(L)u, (k) + desiredGains(2)u, (k)||§ ,

subject to O £ desiredGaing(i) £1 for i =1,2 and
desiredGaing(l) + desiredGains(2) =1 .

These desired gains become the desired outputs for the
recursive least squares algorithm which trains the FNN of
the ACM.

1. IMPLEMENTATION AND SOFTWARE-IN-THE-LOOP
SIMULATION RESULTS

The architecture already described above has been
implemented using an Open control Platform (OCP). The
OCP is a software infrastructure developed by Boeing in
collaboration with Georgia Tech to enable the
implementation of advanced control algorithms for UAV’s
[7,8,9]. It allowsfor system reconfiguration,
interoperability of different operating systems and
platforms, plug and play connectivity, whileit enables the
implementation of sophisticated multirate hybrid systems.
The OCP includes a Controls APl which allows the user to
generate easily the code required for the application at
hand, and to customize it to include his own control
algorithms. Georgia Tech is also developing a Hybrid
Controls API that is being integrated into the OCP, which
facilitates the implementation of certain common operations
required for hybrid control systems[10,11].

The architecture was tested in a software-in-the-loop
simulation of a' Y amaha Rmax helicopter. The adaptive
mode transition controller includes three modes (hover,
forward flight at 20ft/sec, and forward flight at 50ft/sec)
and two transitions (hover - forward flight at 20ft/sec, and
forward flight at 20ft/sec - forward flight at 50ft/sec).

Simulation results are presented in Figure 3. It is observed
how the vehicle remains stable and transitions are carried
out smoothly among local controllers while keeping a small
error with respect to the desired trajectory.

IV. CONCLUSION

A hierarchical/intelligent control architecture for an
unmanned aerial vehicleis proposed. The architectureis
based on an adaptive mode transition control scheme,
which entails new componentsin the middle level and high
level to establish a mission and generate the set points for
the corresponding trajectory. Software-in-the-loop
simulation results are presented for the application of this
architecture to the control of arotary wing UAV. The
resultsillustrate the effectiveness of the scheme. In the near
future this architecture will be tested using a hardware-in-
the-loop simulation of the vehicle, to be followed by a
flight test.
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Figure 3. Simulation Results
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