
   
Abstract-- In this paper, a hierarchical/intelligent control 
architecture for an unmanned aerial vehicle (UAV) is 
proposed. The architecture consists of three levels: the highest 
level is occupied by mission planning routines. At this level, 
information about the way points the vehicle must follow is 
available and logic-based routines decide upon mission tasks 
while maintaining physical constraints and generate the task 
queue. The mid-level controller coordinates the task execution 
while a trajectory generation component receives the task 
information from the high-level module and provides set 
points for low-level stabilizing controllers whose function is to 
maintain the vehicle in a stable state and to follow accurately 
the commanded trajectory. An adaptive mode transition 
control algorithm resides also at the lowest level of the 
hierarchy consisting of two components: a mode transition 
controller and the accompanying adaptation mechanism. The 
adaptation routine may be turned on only when needed. The 
transitioning algorithm operates in real -time while adapting 
on-line to disturbances and other external inputs. This 
intelligent/hierarchical architecture is being implemented 
using a novel software infrastructure called Open Control 
Platform, which facilitates interoperability, plug-and-play and 
other functionalities. Simulation results illustrate the 
robustness and effectiveness of the proposed scheme. An 
actual flight demonstration is planned for the near future as 
part of a DARPA sponsored research program. 
 
Index Terms— UAV, hierarchical control, intelligent control, 
mission planning, mode transition control 
 

I. INTRODUCTION 

 
Control of Autonomous Aerial Vehicles presents unique 
challenges not only in the design of control algorithms, but 
also in the strategies and methodologies used to integrate 
and implement those algorithms on the actual vehicles. 
These challenges appear also in other complex system 
applications, so new software enabled control technologies 
are being developed to address them [1]. In this paper, an 
intelligent/hierarchical control architecture for unmanned 
aerial vehicles (UAV) is proposed. The main objective of 
this architecture is to improve the degree of 
autonomy/intelligence of the UAV and its performance 
under uncertain conditions, for instance when external 
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perturbations are present. The architecture is based on 
concepts developed in [2,3,4,5] where the adaptive mode 
transition control scheme was first introduced. This paper 
suggests a new approach to the adaptive mode transition 
control problem and introduces a hierarchical architecture 
to implement it. In this new approach, desired transition 
models are replaced by the middle level trajectory 
generation and the high level mission planning components. 
The architecture is flexible enough to enable the future 
integration of additional intelligent attributes at the high 
level. A new adaptive mode transition control scheme and 
its associated algorithms are discussed. The algorithms have 
been implemented and tested using the Open Control 
Platform (OCP) - a new open software infrastructure 
especially developed for the implementation of complex 
reconfigurable control systems such as UAV’s [6,7,8]. 
 

II. OVERAL ARCHITECTURE FOR CONTROL OF UNMANNED 
AERIAL VEHICLES 

 
The proposed architecture for the control of UAV’s consists 
of a hierarchy of three levels that are described below 
(Figure 1). 
 

A.  High Level: Mission Planning 
 
The mission planning component translates a high level 
representation of the mission into a low-level task queue 
and coordinates the execution of low-level tasks with the 
trajectory generation component at the middle level. The 
mission can be established as a sequence of actions to be 
executed, for instance: fly to a way point and hover there, 
fly to a way point at certain speed, keep the same velocity 
and heading for a certain period of time, etc. Cinematic 
constraints like maximum speed and acceleration are 
specified and can be changed for each section of the 
mission. 
 
Every action is specified through a high level command 
given to the mission planning module. When a new action 
is suggested, the sequence of tasks that must be performed 
are generated and added to the tail end of the task queue. 
Each task represents a maneuver that takes the vehicle from 
the actual state to a target state and includes the following 
information: 
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1. Time to complete the task 
2. Target position 
3. Target direction of the flight path for this task 
4. Target heading angle 
5. Heading mode: specifies whether the value of the 

heading is absolute or relative to the direction of the 
flight path for coordinated flight 

6. Target speed 
7. Maximum acceleration 
 
A mission may be completely specified before it is 
executed but may also be modified, or re-planned or 
expanded at run time. This feature enables the modification 
or extension of the mission at run time. Re -planning is 
particularly important for the future incorporation of 
obstacle and collision avoidance algorithms. 
 
At run time, the mission planning component coordinates 
the execution of the low-level tasks with the trajectory 
generation component at the middle level in the following 
way: first, the mission planning component takes the task at 
the head of the task queue, removes it from the queue and 
sends the task information to the trajectory generation 
component; then, the trajectory generation component 
executes the task and, when completed, it sends a signal 
back to the mission planning component indicating that the 
last task has been completed; finally, when the mission 
planning component receives the signal, takes the next task 
from the head of the task queue and the cycle is repeated 
until no tasks remain in the task queue. 
 

B. Middle Level: Trajectory Generation 
 
The trajectory generation component generates the set 
points required for the low-level controllers to complete the 
last task received from the mission planning module. When 
the trajectory generation component receives the next task 
information, it computes a 3D spline to generate a 
continuous path linking the actual position with the target 
position. At each sample time, the actual speed is evaluated 
based on the initial speed for the task, the final speed for the 
task, and the maximum acceleration available according to 
the curvature of the path at that time. Position and velocity 
over the path are computed next using the spline 
representation. A similar spline is used to represent the 
heading of the vehicle while the heading is determined in 
two ways according to the heading mode defined for the 
task: either directly from the heading spline if the heading 
mode is set to the absolute heading, or from a combination 
of the heading spline and the heading computed from the 
direction of the path, if the heading mode is set to the 
coordinated heading. Also the heading rate is computed in a 
consistent manner. 
  
After generating the set points corresponding to the actual 
sample time, the condition for completion of the task is 
checked and a comparison is made with the actual state of 

the vehicle to determine if the task was completed 
successfully or not. A signal is sent to the high level module 
indicating the termination status of the task so that the next 
one can be initiated. 
 

C.  Low-Level: Adaptive Mode Transition Control 
 
The purpose of the low level controllers is to stabilize the 
vehicle and force it to follow accurately the commanded 
trajectory generated by the middle level. In this 
architecture, a new approach to the adaptive mode 
transition control is introduced. The adaptive mode 
transition control consists of the mode transition control 
component and the adaptation mechanism component 
(Figure 2). The following description refers to the case of a 
rotary wing UAV. 
 

1) Mode Transition Control Component 
 
The mode transition control component consists of several 
subcomponents: the local controllers (one for each local 
mode), the active control models (one for each transition), 
and the mode transition manager. The mode transition 
manager decides which controller to use at a given time (a 
local controller or an active control model) based on the 
actual state of the UAV. The mode transition control by 
itself does not perform any adaptation. 
 
In this new approach, the local controllers are of the 
discrete time tracking variety running at a fixed sample rate. 
The control law for these controllers is given by: 
 
  itrimi ukeKku ,)()( += ,  (1) 

 
where k  represents the discrete time, )(ku  is the actuator 

command vector, )(ke  is the error between the desired 
state (set point) generated by the trajectory generation 
component ( )(kxd  ) and the actual state of the vehicle 

obtained from on-board sensors  ( )(kx  ). The parameters 

for local controller i  are the matrix gain iK , and the trim 

value of the actuator command itrimu , . 

 
The state of the vehicle is given by 
 
  Trqpwvuzyxkx ],,,,,,,,,,,[)( ψθφ= , 
 
where x , y , z  represent the position, φ , θ , ψ the 
attitude, u , v , w  the velocity, and p , q , r the angular 
rates. 
 
A transformation is performed on  )(kx  and )(kxd , before 
the control algorithms are applied, to make them 
independent of the actual heading of the vehicle. That is, if 

xψ  is the actual value of the heading in )(kx , then the 
transformed values are obtained by 
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After the transformation, the tracking error is given by 
 
  )()()( kxkxke d −= . (3) 
 
The actuator command vector is given by 
 

TpedalrollStickpitchStickerthrotleLevku ],,,[)( = . 
 
The design procedure for the local controllers is as follows: 
once the operating state of a mode is decided, an 
approximate model of the vehicle is linearized about that 
state, then discretized., and a linear quadratic regulator is 
computed for the matrix gain iK . When an approximate 
model of the vehicle is not available, the linearized model 
could be obtained from a Fuzzy Neural Net model trained 
with input-output data from the actual vehicle in the same 
way as with the active plant models to be discussed later. 
 
The mode transition manager (MTM) coordinates the 
transitions in this new approach. Unlike [2,3,4,5] where the 
transitions were pre-scheduled and a Mode Selector module 
coordinated the transitions, the MTM coordinates the 
transitions automatically in the new technique based on the 
actual state of the vehicle. In order to accomplish this task, 
a Mode Membership Function is defined for each local 
mode and the MTM determines which local mode or 
transition should be activated relying upon these constructs. 
 
For local mode i  the Mode Membership Function is 
defined as 
 

  )()( ii
T
i

T
i mxmx

i e −ΣΣ−−=µ  , (4) 
 
where x  is the state of the vehicle, im  is the center 

(operating state) of the mode, and iΣ  is a positive semi-

definite diagonal matrix whose elements represent the 
inverse of the deviations for each component of x  for that 
mode. 
 

To determine which mode is  active, the MTM computes the 
Mode Membership Functions for all local modes. If  

5.0))(( ≥kxlµ  for the actual state, then local mode l  will 
be active. Mode centers and deviations are defined so that 

5.0))(( ≥kxlµ  can be valid for only one l. That way the 
modes correspond to disjoint regions of the state space. If  

5.0))(( <kxlµ  for all l, then the transition corresponding to 
the two modes with the highest Mode Membership 
Function values will be active. When a local mode is active, 
the corresponding local controller is used to compute the 
control output whereas when a transition is active, the 
corresponding ACM is used to compute the control output. 
 
The active control models are in charge of the transitions 
between local modes. The function of an active control 
model (ACM) is to blend the outputs of the local controllers 
corresponding to one transition in a smooth and stable way, 
that is, the blending of the local controllers should not 
deteriorate the overall performance of the closed loop 
system. Every ACM is linked to the local controllers 
corresponding to the transition, has access to their outputs, 
and also includes a Fuzzy Neural Net (FNN) that generates 
the blending gains to compute the control output. The FNN 
has the same structure as in [2,3,4,5], but its learning 
capabilities have been improved via a new recursive least 
squares training algorithm. The input of the FNN is the 
actual state of the vehicle, )(kx , after the transformation 
given in (2). Therefore, the output of the lth ACM module 
is determined from 
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where 

lACMFNN  represents the function implemented by 

the FNN of the lth ACM, insblendingGa  is the output 

vector of that FNN, and )(ku i  and )(ku j  represent the 

control outputs of the local controllers corresponding to the 
lth ACM. The new approach differs from the one presented 
in [2,3,4,5] in that it uses scalar blending gains, while in 
[2,3,4,5] different blending gains are used for each 
component of )(ku . 
 
When a transition is set up, the FNN of the corresponding 
ACM is trained off-line on the basis of an input-output data 
set generated automatically from a hypothetical transition 
trajectory from the center of the initial mode to the center of 
the target mode. The state is taken from this trajectory and 
the desired blending gains (desired outputs of the FNN) are 
computed based on the Mode Membership Functions 
generated by the mode transition manager. That is, given 
that the state of the vehicle is )(kx  at some point over this 

hypothetical trajectory, and iµ  and jµ  are the Mode 

Membership Functions for the modes involved in the 
transition from mode i  to mode j , then the desired output 
for the FNN at that point is  
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Thus, the computation of an optimal trajectory for the given 
transition is avoided at this stage. This new approach 
assumes that the mode transition controller itself does not 
determine the trajectory for the given transition since the 
trajectory generation component specifies the trajectory at 
the middle level according to the tasks sent by the mission 
planning component. The FNN of the ACM is adapted on-
line by the control adaptation mechanism, as is described in 
the sequel. 
 
Once the local modes are defined and the local controllers 
are designed for each local mode, the transitions are 
established via the ACMs in the mode transition control 
component and the corresponding active plant models, 
which are incorporated into the adaptation mechanism. 
 

2) Adaptation Mechanism Component  
 
The adaptation mechanism component calls the adaptation 
routines of the mode transition control and also includes the 
active plant models (one for each transition), which serve as 
partial models of the plant in the transitions. For each 
transition there is an ACM in the MTC component and the 
associated active plant model (APM) in the adaptation 
mechanism component. The purpose of the APMs is to 
serve as partial models of the plant in the transitions and 
provide the sensitivity matrices required to adapt the 
ACMs. Every APM includes a FNN that is trained to 
represent the dynamics of the vehicle in the transition 
region corresponding to that APM. Therefore, if the model 
of the vehicle is given by 
 

))(),(()1( kukxfkx =+ ,  with 0)0( xx = , (6) 
 
then, the FNN in the APM l  is trained such that 
 

))(),(()1())(),(( kukxfkxkukxFNN
lAPM =+≈ , (7) 

 
given that transition l  is active. A recursive least squares 
training method minimizes the approximation error in (7), 
so this approximation is valid when enough input/output 
data are available to train the FNN. 
 
Near the actual operating point, defined by the pair 

),())(),(( ** uxkukx = , a linearized model of the vehicle is 
obtained from the FNN, that is  
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Sensitivity matrices computed from (8) are used in the 
control adaptation mechanism to adapt the ACMs as is 
described below. 
 
The plant adaptation mechanism is used to train the APMs. 
When the vehicle is in a transition, the input/output 
information from its sensors is used by the plant adaptation 
mechanism to train this model by calling the recursive least 
squares training routine from the FNN. The plant adaptation 
mechanism can be disabled at any time to free system 
resources, if required. In that case, the last value of the 
APM is used by the control adaptation mechanism to 
compute the sensitivity matrices.  
 
The control adaptation mechanism provides the adaptation 
function to the ACMs. When an ACM is active and the 
control adaptation mechanism is enabled, an optimization 
routine is used to find the optimal control value at each time 
step; the optimal blending gains that minimize the error 
between the optimal control and the control produced by 
the ACM are also computed. These optimal blending gains 
constitute the desired outputs for the recursive least squares 
training algorithm in the FNN, corresponding to that ACM, 
which is in turn called by the control adaptation 
mechanism. 
 
The optimization routine used to compute the optimal 
control value uses a finite horizon optimal control 
methodology; the latter is based on the linearized model of 
the vehicle, which is obtained in turn from the sensitivity 
matrices generated from the corresponding APM, as given 
by (8) and (9). The objective of this optimal control 
problem is to minimize the following performance index 
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with  0 ,0 >≥ RQ , subject to 
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This is a discrete linear quadratic soft terminal controller 
problem [6].  Application of the optimization algorithm 
gives the value of )(ku∆  which, in turn, is needed to 

compute )(* ku  from  )()( *
* kuuku ∆+= . This is the 

optimal control value used to compute the desired blending 
gains for the active control model. 
 
The approach constraints the blending gains so the ACM 
produces a convex combination of the outputs of the local 
controllers and guarantees smooth transitions. That is, given 
the outputs of the local controllers corresponding to the 
ACM, )(kui  and )(ku j , the objective is to minimize the 

magnitude of the error 
 

2

2

* )()2()()1()( kunsdesiredGaikunsdesiredGaiku ji +− , 

 
subject to 1)(0 ≤≤ insdesiredGai  for 2,1=i  and 

1)2()1( =+ nsdesiredGainsdesiredGai  . 
  
These desired gains become the desired outputs for the 
recursive least squares algorithm which trains the FNN of 
the ACM.  
 

III. IMPLEMENTATION AND SOFTWARE -IN-THE-LOOP 
SIMULATION RESULTS  

 
The architecture already described above has been 
implemented using an Open control Platform (OCP). The 
OCP is a software infrastructure developed by Boeing in 
collaboration with Georgia Tech to enable the 
implementation of advanced control algorithms for UAV’s 
[7,8,9]. It allows for  system reconfiguration, 
interoperability of different operating systems and 
platforms, plug and play connectivity, while it enables the 
implementation of sophisticated multirate hybrid systems. 
The OCP includes a Controls API which allows the user to 
generate easily the code required for the application at 
hand, and to customize it to include his own control 
algorithms. Georgia Tech is also developing a Hybrid 
Controls API that is being integrated into the OCP, which 
facilitates the implementation of certain common operations 
required for hybrid control systems [10,11]. 
 
The architecture was tested in a software-in-the-loop 
simulation of a Yamaha Rmax helicopter. The adaptive 
mode transition controller includes three modes (hover, 
forward flight at 20ft/sec, and forward flight at 50ft/sec) 
and two transitions (hover - forward flight at 20ft/sec, and 
forward flight at 20ft/sec - forward flight at 50ft/sec). 

Simulation results are presented in Figure 3. It is observed 
how the vehicle remains stable and transitions are carried 
out smoothly among local controllers while keeping a small 
error with respect to the desired trajectory. 
 

IV.  CONCLUSION 

 
A hierarchical/intelligent control architecture for an 
unmanned aerial vehicle is proposed. The architecture is 
based on an adaptive mode transition control scheme, 
which entails new components in the middle level and high 
level to establish a mission and generate the set points for 
the corresponding trajectory. Software -in-the-loop  
simulation results are presented for the application of this 
architecture to the control of a rotary wing UAV. The 
results illustrate the effectiveness of the scheme. In the near 
future this architecture will be tested using a hardware-in-
the-loop simulation of the vehicle, to be followed by a 
flight test. 
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Figure 1. Hierarchical Control Architecture 
Figure 2. Adaptive Mode Transition Control 

 

Figure 3. Simulation Results 
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