

Abstract-- In this paper, a hierarchical/intelligent control
architecture for an unmanned aerial vehicle (UAV) is
proposed. The architecture consists of three levels: the highest
level is occupied by mission planning routines. At this level,
information about the way points the vehicle must follow is
available and logic-based routines decide upon mission tasks
while maintaining physical constraints and generate the task
queue. The mid-level controller coordinates the task execution
while a trajectory generation component receives the task
information from the high-level module and provides set
points for low-level stabilizing controllers whose function is to
maintain the vehicle in a stable state and to follow accurately
the commanded trajectory. An adaptive mode transition
control algorithm resides also at the lowest level of the
hierarchy consisting of two components: a mode transition
controller and the accompanying adaptation mechanism. The
adaptation routine may be turned on only when needed. The
transitioning algorithm operates in real -time while adapting
on-line to disturbances and other external inputs. This
intelligent/hierarchical architecture is being implemented
using a novel software infrastructure called Open Control
Platform, which facilitates interoperability, plug-and-play and
other functionalities. Simulation results illustrate the
robustness and effectiveness of the proposed scheme. An
actual flight demonstration is planned for the near future as
part of a DARPA sponsored research program.

Index Terms— UAV, hierarchical control, intelligent control,
mission planning, mode transition control

I. INTRODUCTION

Control of Autonomous Aerial Vehicles presents unique
challenges not only in the design of control algorithms, but
also in the strategies and methodologies used to integrate
and implement those algorithms on the actual vehicles.
These challenges appear also in other complex system
applications, so new software enabled control technologies
are being developed to address them [1]. In this paper, an
intelligent/hierarchical control architecture for unmanned
aerial vehicles (UAV) is proposed. The main objective of
this architecture is to improve the degree of
autonomy/intelligence of the UAV and its performance
under uncertain conditions, for instance when external

The authors are with the School of Electrical and Computer

Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-
0250. e-mail: gjv@ece.gatech.edu

perturbations are present. The architecture is based on
concepts developed in [2,3,4,5] where the adaptive mode
transition control scheme was first introduced. This paper
suggests a new approach to the adaptive mode transition
control problem and introduces a hierarchical architecture
to implement it. In this new approach, desired transition
models are replaced by the middle level trajectory
generation and the high level mission planning components.
The architecture is flexible enough to enable the future
integration of additional intelligent attributes at the high
level. A new adaptive mode transition control scheme and
its associated algorithms are discussed. The algorithms have
been implemented and tested using the Open Control
Platform (OCP) - a new open software infrastructure
especially developed for the implementation of complex
reconfigurable control systems such as UAV’s [6,7,8].

II. OVERAL ARCHITECTURE FOR CONTROL OF UNMANNED
AERIAL VEHICLES

The proposed architecture for the control of UAV’s consists
of a hierarchy of three levels that are described below
(Figure 1).

A. High Level: Mission Planning

The mission planning component translates a high level
representation of the mission into a low-level task queue
and coordinates the execution of low-level tasks with the
trajectory generation component at the middle level. The
mission can be established as a sequence of actions to be
executed, for instance: fly to a way point and hover there,
fly to a way point at certain speed, keep the same velocity
and heading for a certain period of time, etc. Cinematic
constraints like maximum speed and acceleration are
specified and can be changed for each section of the
mission.

Every action is specified through a high level command
given to the mission planning module. When a new action
is suggested, the sequence of tasks that must be performed
are generated and added to the tail end of the task queue.
Each task represents a maneuver that takes the vehicle from
the actual state to a target state and includes the following
information:

A Hierarchical/Intelligent Control Architecture
for Unmanned Aerial Vehicles

Luis B. Gutiérrez, Student Member, IEEE, George Vachtsevanos, Senior Member, IEEE,
and Bonnie Heck, Member, IEEE.

1. Time to complete the task
2. Target position
3. Target direction of the flight path for this task
4. Target heading angle
5. Heading mode: specifies whether the value of the

heading is absolute or relative to the direction of the
flight path for coordinated flight

6. Target speed
7. Maximum acceleration

A mission may be completely specified before it is
executed but may also be modified, or re-planned or
expanded at run time. This feature enables the modification
or extension of the mission at run time. Re -planning is
particularly important for the future incorporation of
obstacle and collision avoidance algorithms.

At run time, the mission planning component coordinates
the execution of the low-level tasks with the trajectory
generation component at the middle level in the following
way: first, the mission planning component takes the task at
the head of the task queue, removes it from the queue and
sends the task information to the trajectory generation
component; then, the trajectory generation component
executes the task and, when completed, it sends a signal
back to the mission planning component indicating that the
last task has been completed; finally, when the mission
planning component receives the signal, takes the next task
from the head of the task queue and the cycle is repeated
until no tasks remain in the task queue.

B. Middle Level: Trajectory Generation

The trajectory generation component generates the set
points required for the low-level controllers to complete the
last task received from the mission planning module. When
the trajectory generation component receives the next task
information, it computes a 3D spline to generate a
continuous path linking the actual position with the target
position. At each sample time, the actual speed is evaluated
based on the initial speed for the task, the final speed for the
task, and the maximum acceleration available according to
the curvature of the path at that time. Position and velocity
over the path are computed next using the spline
representation. A similar spline is used to represent the
heading of the vehicle while the heading is determined in
two ways according to the heading mode defined for the
task: either directly from the heading spline if the heading
mode is set to the absolute heading, or from a combination
of the heading spline and the heading computed from the
direction of the path, if the heading mode is set to the
coordinated heading. Also the heading rate is computed in a
consistent manner.

After generating the set points corresponding to the actual
sample time, the condition for completion of the task is
checked and a comparison is made with the actual state of

the vehicle to determine if the task was completed
successfully or not. A signal is sent to the high level module
indicating the termination status of the task so that the next
one can be initiated.

C. Low-Level: Adaptive Mode Transition Control

The purpose of the low level controllers is to stabilize the
vehicle and force it to follow accurately the commanded
trajectory generated by the middle level. In this
architecture, a new approach to the adaptive mode
transition control is introduced. The adaptive mode
transition control consists of the mode transition control
component and the adaptation mechanism component
(Figure 2). The following description refers to the case of a
rotary wing UAV.

1) Mode Transition Control Component

The mode transition control component consists of several
subcomponents: the local controllers (one for each local
mode), the active control models (one for each transition),
and the mode transition manager. The mode transition
manager decides which controller to use at a given time (a
local controller or an active control model) based on the
actual state of the UAV. The mode transition control by
itself does not perform any adaptation.

In this new approach, the local controllers are of the
discrete time tracking variety running at a fixed sample rate.
The control law for these controllers is given by:

 itrimi ukeKku ,)()(+= , (1)

where k represents the discrete time,)(ku is the actuator

command vector,)(ke is the error between the desired
state (set point) generated by the trajectory generation
component ()(kxd) and the actual state of the vehicle

obtained from on-board sensors ()(kx). The parameters

for local controller i are the matrix gain iK , and the trim

value of the actuator command itrimu , .

The state of the vehicle is given by

 Trqpwvuzyxkx],,,,,,,,,,,[)(ψθφ= ,

where x , y , z represent the position, φ , θ , ψ the
attitude, u , v , w the velocity, and p , q , r the angular
rates.

A transformation is performed on)(kx and)(kxd , before
the control algorithms are applied, to make them
independent of the actual heading of the vehicle. That is, if

xψ is the actual value of the heading in)(kx , then the
transformed values are obtained by

),),(()(

)),(()(

xdd

x

kxTkx
kxTkx

ψ
ψ

←
←

 (2)

where

[] ,,,,,,,,,,,,)),((T
xx rqpwvuzyxkxT

xxxx ψψψψ ψψθφψ −=

with

 







=









y
x

A
y
x

x
x

x)(ψ
ψ

ψ , 







=









v
u

A
v
u

x
x

x)(ψ
ψ

ψ , and









−

=
)cos()sin(
)sin()cos(

)(
xx

xx
xA

ψψ
ψψ

ψ

After the transformation, the tracking error is given by

)()()(kxkxke d −= . (3)

The actuator command vector is given by

TpedalrollStickpitchStickerthrotleLevku],,,[)(= .

The design procedure for the local controllers is as follows:
once the operating state of a mode is decided, an
approximate model of the vehicle is linearized about that
state, then discretized., and a linear quadratic regulator is
computed for the matrix gain iK . When an approximate
model of the vehicle is not available, the linearized model
could be obtained from a Fuzzy Neural Net model trained
with input-output data from the actual vehicle in the same
way as with the active plant models to be discussed later.

The mode transition manager (MTM) coordinates the
transitions in this new approach. Unlike [2,3,4,5] where the
transitions were pre-scheduled and a Mode Selector module
coordinated the transitions, the MTM coordinates the
transitions automatically in the new technique based on the
actual state of the vehicle. In order to accomplish this task,
a Mode Membership Function is defined for each local
mode and the MTM determines which local mode or
transition should be activated relying upon these constructs.

For local mode i the Mode Membership Function is
defined as

)()(ii
T
i

T
i mxmx

i e −ΣΣ−−=µ , (4)

where x is the state of the vehicle, im is the center

(operating state) of the mode, and iΣ is a positive semi-

definite diagonal matrix whose elements represent the
inverse of the deviations for each component of x for that
mode.

To determine which mode is active, the MTM computes the
Mode Membership Functions for all local modes. If

5.0))((≥kxlµ for the actual state, then local mode l will
be active. Mode centers and deviations are defined so that

5.0))((≥kxlµ can be valid for only one l. That way the
modes correspond to disjoint regions of the state space. If

5.0))((<kxlµ for all l, then the transition corresponding to
the two modes with the highest Mode Membership
Function values will be active. When a local mode is active,
the corresponding local controller is used to compute the
control output whereas when a transition is active, the
corresponding ACM is used to compute the control output.

The active control models are in charge of the transitions
between local modes. The function of an active control
model (ACM) is to blend the outputs of the local controllers
corresponding to one transition in a smooth and stable way,
that is, the blending of the local controllers should not
deteriorate the overall performance of the closed loop
system. Every ACM is linked to the local controllers
corresponding to the transition, has access to their outputs,
and also includes a Fuzzy Neural Net (FNN) that generates
the blending gains to compute the control output. The FNN
has the same structure as in [2,3,4,5], but its learning
capabilities have been improved via a new recursive least
squares training algorithm. The input of the FNN is the
actual state of the vehicle,)(kx , after the transformation
given in (2). Therefore, the output of the lth ACM module
is determined from

),()2()()1()(

)),((

kuinsblendingGakuinsblendingGaku

kxFNNinsblendingGa

ji

ACM l

+=

=
(5)

where

lACMFNN represents the function implemented by

the FNN of the lth ACM, insblendingGa is the output

vector of that FNN, and)(ku i and)(ku j represent the

control outputs of the local controllers corresponding to the
lth ACM. The new approach differs from the one presented
in [2,3,4,5] in that it uses scalar blending gains, while in
[2,3,4,5] different blending gains are used for each
component of)(ku .

When a transition is set up, the FNN of the corresponding
ACM is trained off-line on the basis of an input-output data
set generated automatically from a hypothetical transition
trajectory from the center of the initial mode to the center of
the target mode. The state is taken from this trajectory and
the desired blending gains (desired outputs of the FNN) are
computed based on the Mode Membership Functions
generated by the mode transition manager. That is, given
that the state of the vehicle is)(kx at some point over this

hypothetical trajectory, and iµ and jµ are the Mode

Membership Functions for the modes involved in the
transition from mode i to mode j , then the desired output
for the FNN at that point is

T

ji

j

ji

i

kxkx

kx

kxkx
kx













++))(())((

))((

))(())((
))((

µµ

µ

µµ
µ

.

Thus, the computation of an optimal trajectory for the given
transition is avoided at this stage. This new approach
assumes that the mode transition controller itself does not
determine the trajectory for the given transition since the
trajectory generation component specifies the trajectory at
the middle level according to the tasks sent by the mission
planning component. The FNN of the ACM is adapted on-
line by the control adaptation mechanism, as is described in
the sequel.

Once the local modes are defined and the local controllers
are designed for each local mode, the transitions are
established via the ACMs in the mode transition control
component and the corresponding active plant models,
which are incorporated into the adaptation mechanism.

2) Adaptation Mechanism Component

The adaptation mechanism component calls the adaptation
routines of the mode transition control and also includes the
active plant models (one for each transition), which serve as
partial models of the plant in the transitions. For each
transition there is an ACM in the MTC component and the
associated active plant model (APM) in the adaptation
mechanism component. The purpose of the APMs is to
serve as partial models of the plant in the transitions and
provide the sensitivity matrices required to adapt the
ACMs. Every APM includes a FNN that is trained to
represent the dynamics of the vehicle in the transition
region corresponding to that APM. Therefore, if the model
of the vehicle is given by

))(),(()1(kukxfkx =+ , with 0)0(xx = , (6)

then, the FNN in the APM l is trained such that

))(),(()1())(),((kukxfkxkukxFNN
lAPM =+≈ , (7)

given that transition l is active. A recursive least squares
training method minimizes the approximation error in (7),
so this approximation is valid when enough input/output
data are available to train the FNN.

Near the actual operating point, defined by the pair

),())(),((** uxkukx = , a linearized model of the vehicle is
obtained from the FNN, that is

,
)(

))(),((

)(
))(),((

**

**

,

,

ux

APM

ux

kx

kukxFNN

kx
kukxf

l

∂

∂
≈

∂
∂

=Φ

 (8a)

,
)(

))(),((

)(
))(),((

**

**

,

,

ux

APM

ux

ku
kukxFNN

ku
kukxf

l

∂
∂

≈

∂
∂

=Γ

 (8b)

so

.))(())((

)(),(()1(

*** xukuxkx

kukxfkx

+−Γ+−Φ≈

=+
 (9)

Sensitivity matrices computed from (8) are used in the
control adaptation mechanism to adapt the ACMs as is
described below.

The plant adaptation mechanism is used to train the APMs.
When the vehicle is in a transition, the input/output
information from its sensors is used by the plant adaptation
mechanism to train this model by calling the recursive least
squares training routine from the FNN. The plant adaptation
mechanism can be disabled at any time to free system
resources, if required. In that case, the last value of the
APM is used by the control adaptation mechanism to
compute the sensitivity matrices.

The control adaptation mechanism provides the adaptation
function to the ACMs. When an ACM is active and the
control adaptation mechanism is enabled, an optimization
routine is used to find the optimal control value at each time
step; the optimal blending gains that minimize the error
between the optimal control and the control produced by
the ACM are also computed. These optimal blending gains
constitute the desired outputs for the recursive least squares
training algorithm in the FNN, corresponding to that ACM,
which is in turn called by the control adaptation
mechanism.

The optimization routine used to compute the optimal
control value uses a finite horizon optimal control
methodology; the latter is based on the linearized model of
the vehicle, which is obtained in turn from the sensitivity
matrices generated from the corresponding APM, as given
by (8) and (9). The objective of this optimal control
problem is to minimize the following performance index

∑
+

=

∆∆+=
Nk

ki

TT iuRiuiQeieJ)()()()(
2
1

, (10)

with 0 ,0 >≥ RQ , subject to

)()()1(iuixix Γ∆+Φ∆=+∆ , (11)

for Nkkki ++= ,...,1, , with kxkx ∆=∆)(, where

.)()(

and ,)()(

,)()(
,)()()(

*
*

*

*

uiuiu

xixix

xixix
ixixie

dd

d

−=∆

−=∆

−=∆
∆−∆=

This is a discrete linear quadratic soft terminal controller
problem [6]. Application of the optimization algorithm
gives the value of)(ku∆ which, in turn, is needed to

compute)(* ku from)()(*
* kuuku ∆+= . This is the

optimal control value used to compute the desired blending
gains for the active control model.

The approach constraints the blending gains so the ACM
produces a convex combination of the outputs of the local
controllers and guarantees smooth transitions. That is, given
the outputs of the local controllers corresponding to the
ACM,)(kui and)(ku j , the objective is to minimize the

magnitude of the error

2

2

*)()2()()1()(kunsdesiredGaikunsdesiredGaiku ji +− ,

subject to 1)(0 ≤≤ insdesiredGai for 2,1=i and

1)2()1(=+ nsdesiredGainsdesiredGai .

These desired gains become the desired outputs for the
recursive least squares algorithm which trains the FNN of
the ACM.

III. IMPLEMENTATION AND SOFTWARE -IN-THE-LOOP
SIMULATION RESULTS

The architecture already described above has been
implemented using an Open control Platform (OCP). The
OCP is a software infrastructure developed by Boeing in
collaboration with Georgia Tech to enable the
implementation of advanced control algorithms for UAV’s
[7,8,9]. It allows for system reconfiguration,
interoperability of different operating systems and
platforms, plug and play connectivity, while it enables the
implementation of sophisticated multirate hybrid systems.
The OCP includes a Controls API which allows the user to
generate easily the code required for the application at
hand, and to customize it to include his own control
algorithms. Georgia Tech is also developing a Hybrid
Controls API that is being integrated into the OCP, which
facilitates the implementation of certain common operations
required for hybrid control systems [10,11].

The architecture was tested in a software-in-the-loop
simulation of a Yamaha Rmax helicopter. The adaptive
mode transition controller includes three modes (hover,
forward flight at 20ft/sec, and forward flight at 50ft/sec)
and two transitions (hover - forward flight at 20ft/sec, and
forward flight at 20ft/sec - forward flight at 50ft/sec).

Simulation results are presented in Figure 3. It is observed
how the vehicle remains stable and transitions are carried
out smoothly among local controllers while keeping a small
error with respect to the desired trajectory.

IV. CONCLUSION

A hierarchical/intelligent control architecture for an
unmanned aerial vehicle is proposed. The architecture is
based on an adaptive mode transition control scheme,
which entails new components in the middle level and high
level to establish a mission and generate the set points for
the corresponding trajectory. Software -in-the-loop
simulation results are presented for the application of this
architecture to the control of a rotary wing UAV. The
results illustrate the effectiveness of the scheme. In the near
future this architecture will be tested using a hardware-in-
the-loop simulation of the vehicle, to be followed by a
flight test.

ACKNOWLEDGMENT

This work is supported by the DARPA Software Enabled
Control Program under Contracts #33615-98-C-1341
and#33615-99-C-1500, managed by the Air Force Research
Laboratory (AFRL). We gratefully acknowledge DARPA’s
Software Enabled Control Program, AFRL, and Boeing
Phantom Works for their continued support.

REFERENCES

[1] B. Heck, L. Wills, and G. Vachtsevanos, 2001, “Software

Enabled Control: Background and Motivation,” in Proc. of American
Control Conference, 2001, vol.5, pp.3433-3438.

[2] F. Rufus, G. Vachtsevanos, and B. Heck, “Real-time Adaptation
of Mode Transition Controllers,” Journal of Guidance, Control, and
Dynamics, vol.25, No.1, pp.167-175, 2002.

[3] F. Rufus, G. Vachtsevanos, and B. Heck, “Adaptive Mode
Transition Control of Nonlinear Systems Using Fuzzy Neural
Networks,” in Proc. 8th IEEE Mediterranean Conference on Control
and Automation , Patras, Greece, 2000.

[4] F. Rufus, B. Heck, and G. Vachtsevanos, “So ftware-enabled
Adaptive Mode Transition Control for Autonomous Unmanned
Vehicles,” in Proc. 19th Digital Avionics Systems Conference, 2000,
vol. 1, pp. 1.E.1-1 -1.E.1-8.

[5] F. Rufus, “Intelligent approaches to mode transition control,”
2001, Ph. D. Thesis, School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA.

[6] A. E. Bryson, Jr, Dynamic Optimization, Menlo Park, CA:
Addison Wesley, 1999.

[7] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J.V.R. Prasad,
D. Schrage, and G. Vachtsevanos, “An Open Platform for
Reconfigurable Control,” IEEE Control Systems Magazine, vol. 21,
No. 3, pp. 49-64, 2001.

[8] L. Wills, S. Kannan, B. Heck, G. Vachtsevanos, C. Restrepo, S.
Sander, D. Schrage, and J.V.R. Prasad, 2000, “An Open Software
Infrastructure for Reconfigurable Control Systems
,” in Proc.of American Control Conference, 2000, vol.4, pp.2799-
2803.

[9] L. Wills, S. Sander, S. Kannan, A. Kahn, J.V.R. Prasad, and D.
Schrage, “An Open Control Platform for Reconfigurable,
Distributed, Hierarchical Control Systems,” Proceedings 19th Digital

Desired and Actual 3D Trajectory

Desired and Actual Position and Velocity Actuator Commands

Position And Heading Errors

-200
0

200
400

600
-500

0

500
-50

0

50

100

North = x (ft)
East = y (ft)

altitude = -z (ft)

80 90 100 110 120 130 140 150 160 170 180
-10

0

10

ex (ft)

80 90 100 110 120 130 140 150 160 170 180
-2
0
2
4
6

ey (ft)

80 90 100 110 120 130 140 150 160 170 180
-0.6
-0.4
-0.2

0
0.2

ez (ft)

80 90 100 110 120 130 140 150 160 170 180
-5
0
5

10

ePsi (deg)

time (sec)

80 90 100 110 120 130 140 150 160 170 180

-400

-200

0

200

400

600

x, y, z (ft)

time (sec)

80 90 100 110 120 130 140 150 160 170 180

-20

0

20

xdot, ydot, zdot (ft/sec)

time (sec)

80 90 100 110 120 130 140 150 160 170 180

-0.8
-0.6
-0.4
-0.2

throttleLever

80 90 100 110 120 130 140 150 160 170 180

-0.1
0

0.1
0.2

pitchStick

80 90 100 110 120 130 140 150 160 170 180

-0.1
0

0.1
0.2

rollStick

80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

time (sec)

pedal

Avionics Systems Conferences, Philadelphia, PA, 2000, vol. 1, pp.
4D2/1 -4D2/8.

[10] M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Heck, and G.
Vachtsevanos, “Rapid Prototyping of Transition Management Code
for Reconfigurable Control Systems,” in Proc. of the 13th IEEE
International Workshop on Rapid Systems Prototyping (RSP),
Darmstadt, Germany, 2002, pp. 76-83.

[11] M. Guler, Scott Clements, Linda Wills, Bonnie Heck, and
George Vachtsevanos, “Generic Transition Management for
Reconfigurable Hybrid Control Systems,” IEEE Control Systems
Magazine, 28 pages, to be published.

Figure 1. Hierarchical Control Architecture
Figure 2. Adaptive Mode Transition Control

Figure 3. Simulation Results

UAV

Mission Planning

High Level

Mid Level

Low Level

Trajectory Generation

Mode Transition
Controller

Adaptation
Mechanism

Set Points

UAV State Actuator
Commands

Task Info Task Completed
Mode Transition

Controller
Adaptation
Mechanism

Set Points
From Mid

Level

UAV State
Actuator

Commands

Mode
Transition
Manager

Local
Controllers Active

Control

C2

C1

ACM1

APM1

PAM

CAM

M

M

	Conference Program
	Author Index
	Main Menu

