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Implementation of a Neural Network Tracking
Controller for a Single Flexible Link:

Comparison with PD and PID Controllers
L. B. Gutiérrez,Member, IEEE, F. L. Lewis, Fellow, IEEE, and J. Andy Lowe

Abstract—The objective of this paper is to show the results of
the practical implementation of a neural network (NN) tracking
controller on a single flexible link and compare its performance
to that of proportional derivative (PD) and proportional inte-
gral derivative (PID) standard controllers. The NN controller is
composed of an outer PD tracking loop, a singular perturbation
inner loop for stabilization of the fast flexible-mode dynamics,
and an NN inner loop used to feedback linearize the slow pointing
dynamics. No off-line training or learning is needed for the NN.
It is shown that the tracking performance of the NN controller
is far better than that of the PD or PID standard controllers.
An extra friction term was added in the tests to demonstrate the
ability of the NN to learn unmodeled nonlinear dynamics.

Index Terms—Flexible structures, neurocontrollers.

I. INTRODUCTION

I N RECENT literature, there have been many neural net-
work (NN) controllers proposed for robot arms or other

nonlinear systems [4], [20]–[26]. The performance of these
NN controllers on actual systems has been open to question,
despite the fact that several of these references provide stability
proofs. In this paper, we implement the NN controller derived
in [31] on an actual single-flexible-link robot arm which could
emulate, for instance, a tank gun barrel in DOD applications.
It is found that the NN controller far outperforms standard
proportional derivative (PD) and proportional integral deriva-
tive (PID) controllers, even for the single-link arm, which is
basically linear except for nonlinear friction effects.

The control of flexible-link robot arms belongs to a class of
problems characterized by reduced control effectiveness and
additional unstable zero dynamics. Some other problems in
this category are large-scale space structures, overhead gantry
cranes, and other industrial processes. The requirement of
controllers with faster response and higher accuracy introduces
a challenge that the researchers have faced in different ways.

Several researchers [19], [30] have observed that the ap-
proximate flexible-link robot arm dynamics is input–output
feedback linearizable, but the zero dynamics is not asymptot-

Manuscript received August 6, 1996; revised August 11, 1997.
L. B. Gutiérrez was with the Automation and Robotics Research Institute,

The University of Texas at Arlington, Fort Worth, TX 76118-7115 USA. He
is now with the School of Engineering, Universidad Pontificia Bolivariana,
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ically stable when the tip position is taken as the output. To
control the arm, a modified output was defined to yield stable
zero dynamics. However, this output does not correspond to
practical tracking objectives, except in the set-point command
case. In [27] and [29], input–output feedback linearization
and a singular perturbation correction term [11] to stabilize
the internal dynamics was used to control a multilink flexible
arm. Finally, in [17], a Lyapunov approach is used to stabilize
a component of the tracking error, but not the tracking error
in its entirety.

There are different control techniques for rigid robot arms
available in the literature. These techniques require an exact
knowledge of the nonlinear terms (computed torque), knowl-
edge of bounds on uncertainties (robust control), or knowledge
of a nonlinear regression matrix of robot functions (adaptive
control) [14]. In practice, it is very difficult to have such
a priori knowledge of the arm dynamics, especially in the
presence of frictional terms, which may not have a known
dynamical form.

To overcome these limitations, an NN tracking controller
for a rigid-link robot arm has been devised in [13] and
[15]. In this scheme, there is an outer PD tracking loop,
with the NN used in a feedback linearization inner loop.
The weight-training rules include an e-modification term [22]
and a term corresponding to a second-order term. Using a
Lyapunov approach, it is shown that these training rules
guarantee tracking performance and bounded weights, even
though there do not exist ideal weights, such that the NN
perfectly reconstructs the nonlinear robot function.

In [31], a tracking controller for a flexible arm is designed
using singular perturbation plus an NN feedback linearization
inner loop. There, a modified output for tracking is defined
that does correspond to practical tracking requirements. The
structure of that controller includes an outer PD tracking loop,
a singular perturbation inner loop for stabilization of the fast
dynamics, and an NN inner loop used to feedback linearize
the rigid dynamics. Applying singular perturbation theory, it
is shown that, after stabilizing the fast dynamics, the slow
dynamics can be controlled using the same approach used in
[13] and [15]. This approach avoids the requirement of the
knowledge of friction, gravity, and Coriolis/centripetal terms,
or any regression matrix. In contrast to other NN controllers
in the literature, there is no off-line learning phase, the NN
weights are easy to initialize without known “stabilizing initial
weights” (the weights are initialized at zero), and the controller
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guarantees boundedness of the tracking error and control
signal.

In this paper, we present some practical implementation
results for a single flexible link for the controller designed in
[31]. Despite the fact that the dynamics of a single flexible
link are linear, an extra friction term was added in the
implementation to show the capability of the NN controller
to compensate for nonlinearities in the model by learning.
A comparison with the performance of standard PD and
PID controllers is performed to show the superior tracking
performance of the NN controller.

II. DYNAMICS OF A FLEXIBLE-LINK ROBOT ARM

In [3], [5]–[7], and [16], it is shown that the dynamics of
any multilink flexible-link robot can be represented by

(1)

with

where is the vector of rigid modes (generalized joint
coordinates) and is the vector of flexible modes (the
amplitudes of the flexible modes). represents the inertia
matrix, is the Coriolis and centrifugal matrix, is
the stiffness matrix, is the friction matrix, is
the gravity matrix, is an input matrix dependent on the
boundary conditions selected in the assumed mode shapes
method, and includes the control torques applied to each
joint.

The model (1) follows the same properties of any standard
rigid-link robot [16]. That is, is positive definite and
upper and lower bounded, is bounded by
and can be chosen such that is skew
symmetric [16].

III. NN CONTROL OF FLEXIBLE-LINK ROBOT ARMS

A. Singular Perturbation Approach

The singular perturbation approach basically consists of
breaking the dynamics of the system into two parts, each
of them in a separate time scale [10]–[12]. In this case, the
slow dynamics correspond to the rigid modesand the fast
dynamics correspond to the flexible modes In order to
apply singular perturbation, (1) can be split, as in [27] and
[29]:

(2)

Now introduce the scale factorand define

(3)

where is the smallest stiffness in Define

(4)

Then, defining , such that
is a normalized stiffness respect to we get

(5)

where
Here is considered the case in which the stiffness of the

links is sufficiently large, so that is sufficiently small. The
control objective is that should track a prescribed
trajectory. For that purpose, define the control

(6)

where is the slow component and is the fast component.
From this point, the bar over the variables is used to denote
the slow part of them. To obtain the equations for the slow
dynamics, set in (5) to obtain

(7)

and the algebraic slow manifold equation

(8)

which is solved for the slow variables

(9)

Substituting (9) in (7) and defining

and we get

(10)

For the fast subsystem, define the states

(11)

with a time scale resulting in

(12)

since Setting and substituting from (9) the
fast dynamics are found to be

(13)

or

(14)

with
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According to Tikhonov’s theorem [10], [11], the original
system (2) can be described to orderusing (10) and (14)
with

(15)

with denoting terms of order
Now, define the tracking output

(16)

which corresponds to theslow partof the rigid-mode variables
(e.g., of the link-tip motion). Assume that is stabi-
lizable, the fast system parameters have bounded uncertainties
and perturbations (slow subsystem variables), and the slow
system variables vary smoothly with time. The stabilizing
assumption on is satisfied in practical systems and
is far milder that the requirement for stable zero dynamics.
Moreover, the definition (16) corresponds to practical tracking
objectives in contrast to the “reflected” outputs defined in
[19] and [30]. Under these assumptions, a stabilizing control

can easily be designed using linear techniques (e.g.,
design), so that

(17)

stabilizes (14), with given by (9).

B. NN Control of the Rigid Dynamics

The slow dynamics given by (10) can be rewritten as

(18)

which is exactly the Lagrange form of an-link rigid robot
arm, satisfying the standard robot properties. For this part, an
NN controller can be designed [13], [15]. Note that

is skew symmetric.
Given a desired trajectory for , the tracking error is

(19)

Define the filtered tracking error as

(20)

where Using (20), the arm dynamics can be
rewritten in terms of the filtered tracking error as

(21)

where the nonlinear robot function is

(22)

with It is assumed that is unknown.
An NN can be used to estimate based on theuniver-

sal approximation propertyof NN’s, which is stated in the
following theorem.

Theorem—Universal Approximation Property of the NN:
Let be a smooth function. Then, given a
compact set and a positive number there exists
a two-layer NN, such that

(23)

with for all for some (sufficiently large)
number of hidden-layer neurons. is generally a function
of and is called the NN function approximation error.
decreases as increases.

The estimate of is given by

(24)

Let

(25)

be the ideal weight matrix, which is unknown.
The functional approximation error of the NN is

(26)

which can be written using a Taylor expansion, assuming
smooth activation functions, as

(27)

where

(28)

and the additional error term

(29)

bounded according to

(30)

The Jacobian is an easily computed function of
It is assumed that the ideal weights of the NN are bounded,

so that

(31)

with a known bound, and the desired trajectory is bounded
according to

(32)

with a known bound.
Definition: The solution to

is globally uniformly ultimately bounded (GUUB) if for all
there exists an and a number such that

for all
Under all the assumptions stated above, an NN controller is

defined by the following theorem [31].
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Fig. 1. Overall control structure of the NN controller for a flexible link robot.

Theorem: Let the desired trajectory and the ideal unknown
weights be bounded according to the assumptions. Let the
control input for (18) be defined by

(33)

with robustifying term

(34)

and gain
Let the NN weights be tuned by

(35)

with any constant matrices and
a scalar design parameter

Then, the filtered tracking error and the NN weight
errors are GUUB. Moreover, the tracking error may be
kept as small as desired by increasing the gains

The proof of this theorem uses Lyapunov theory and is given
in [31], where explicit bounds on and are given.
Notice that the training rules in (35) include the standard
backpropagation terms plus an e-modification [22] and a
second-order correction term. Furthermore, the NN weights
can be easily initialized at zero, since the PD control stabilizes
the system while the NN is learning. The NN controller
is designed to control the robot arm while it is learning
to improve the performance, hence, no off-line training is
required.

The overall structure of the controller defined in Sections
III-A and B is shown in Fig. 1.

C. Simulation

The simulation of the NN controller was performed in
Matlab for a single flexible link. The model of the flexible link
included three flexible modes, even though the controller only

compensated for the first two modes (this was to corroborate
that the controller works well even compensating for only a
finite number of modes). The model was obtained as described
in [7], using the parameters of the flexible-link test bed at
the Automation and Robotics Research Institute (ARRI), The
University of Texas at Arlington. The modal frequencies for
the first three modes for this flexible link are 1.6, 10.0, and
28.1 Hz.

The controller used the following parameters:

The NN in the controller included ten neurons in the hidden
layer and used the following parameters:

The activation functions for the neurons in the hidden layer
were selected as the sigmoid functions

for

It was observed in practice that, with the sigmoid functions
defined this way, the NN learned faster and was able to reduce
the tracking error more.

The results of the simulation are plotted in Fig. 2. Notice
that, after some time, the NN learns the model of the link,
reducing the tracking error to almost zero. Using a bigger
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Fig. 2. Simulation of the NN controller with a single flexible link.

value for the learning rates and improved the tracking
performance (faster learning and less tracking error), but
produced a worse transient response (more oscillatory) and
more excitation of the flexible modes (increased the magnitude
of and , the flexible modes).

IV. I MPLEMENTATION OF THE CONTROLLER

IN THE FLEXIBLE-LINK TEST BED

The NN controller discussed in Section III was implemented
on a single-flexible-link test bed at the ARRI, and some of the
results obtained are presented here.

A. Description of the Implementation

The actual test bed at the ARRI is shown in Fig. 3. A list
of the main characteristics of the practical implementation is
given below.

• The flexible link is an aluminum beam with dimensions:
48 in 2 in 1/8 in.

Fig. 3. Actual flexible-link test bed at the ARRI.

• Only the first two flexible modes were considered.
• The robust term was not included. was selected big

enough to avoid the necessity of The manifold term
was not included, since the actual model of the flexible
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Fig. 4. Block diagram of NN controller implementation at ARRI’s flexible-link test bed.

link is unknown. As shown by (9), the implementation
of would require the exact knowledge of the matrixes
of the model.

• Even though the dynamics for the flexible link with 1
degree of freedom is linear, an extra nonlinear friction
term was added to check the capability of the controller
to compensate for the nonlinearities in the model.

• The NN is composed of ten neurons in the hidden layer,
with five inputs and one output

• The controller defined by (6), (17), (33), and (35) was
discretized with a sampling period of 5 ms. In the
discretization process, the differential equations in (35)
were solved on line using trapezoidal integration.

A block diagram describing the practical implementation
of the controller is shown in Fig. 4. The hardware includes
the interface cards and external components necessary for the
measurement of the angular position of the link and the
flexible modes and (optical encoder, strain gauges, sig-
nal conditioners, and analog-to-digital converters). Estimated
values of are calculated based on consecutive

samples of and respectively. Besides, there is
a digital-to-analog converter connected to the servo amplifier
that drives the servo motor for the link.

Notice in Fig. 8(a), without the extra friction term, and
Fig. 8(b), with the extra friction term, that the same controller
learns the model of the link, readapting to changes in it
(changes in the model like changes in friction characteristics).
Without changing the parameters of the controller, the NN
controller is able to take the tracking error to almost zero in
both cases.

The software was implemented in LabView and C. The
routines that perform the control action in real time are
implemented in C. The execution of these external routines is
fired periodically by the computer timer routines. The control
routines sample the external signals and use the parameters
defined in the parameters buffer to calculate the control signal

Some of the signals are stored in the signals buffer allowing
the LabView virtual instruments (VI’s) to monitor them.

The LabView VI’s work as a graphic user interface that
allows one to start the controller, change the mode of opera-
tion, define the reference signals, change the parameters of the
controller, and monitor the signals through charts and graphics.
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(a) (b)

Fig. 5. Performance of the PD control. (a) Without additional friction. (b) With additional friction.

These VI’s are linked to the external C routines which run in
the background in real time. The communication between the
external C routines and the LabView VI’s is accomplished
through some VI’s that read from and write to the buffers
using code interface nodes ( CIN’s).

B. Experimental Results in the Flexible-Link Test Bed

Standard PD and PID controllers were implemented and
tested in the flexible-link test bed to compare their performance
with the PD NN controller. This comparison allows us to
show the advantages of the proposed controller over the
standard controllers.

1) PD Control: A PD controller was implemented using
the control law

with

using the following parameters:

and the reference signal

with frequency Hz.
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(a) (b)

Fig. 6. Performance of the PID control. (a) Without additional friction. (b) With additional friction.

The performance of the tracking PD control without the
NN is illustrated in Fig. 5(a) without the extra friction term
and in Fig. 5(b) with the extra friction term. Notice that the
tracking error is very big; its magnitude is comparable to that
of the reference signal. Even though the magnitude of the error
decreases incrementing the controller gains, the tracking error
is not eliminated. These characteristics are preserved in the
presence of the extra friction term.

2) PID Control: A PID controller was implemented using
the control law

with

using the following parameters:

and the reference signal

with frequency Hz.
The performance of the tracking PID control is illustrated

in Fig. 6(a) without the extra friction term and in Fig. 6(b)
with the extra friction term. The integral part of the PID
controller is supposed to eliminate the steady-state error,
but only works for constant desired trajectories. In this
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(a) (b)

Fig. 7. Performance of the PD+NN control before learning. (a) Without additional friction. (b) With additional friction.

case, with a varying desired trajectory, the tracking is even
worse when the integral part is introduced (notice that the
tracking error is bigger than with the PD control). As in
the case of the PD controller, the PID controller is not able
to compensate for the extra friction term.

3) NN+PD Control: The NN tracking controller was im-
plemented as described in Section IV-A using the same
parameters of the simulation in Section III-C, except that, in
this case

This value of in the practical implementation was enough.
A bigger value produced a very oscillatory response.

The reference signal was

with frequency Hz.

The performance of the NN tracking control is illustrated in
Fig. 7 before the learning is complete and in Fig. 8 after the
learning is complete. The training of the NN takes less than
1 min, after which the tracking error is reduced to almost zero.
The learning is really active all the time (on-line training), but
we refer to learning as being complete to the instant when
the NN has learned the model of the link under the actual
conditions, reducing the tracking error to almost zero.

In practice, it was noticed that a change in the reference
signal increased the tracking error momentarily, requiring a
readaptation of the NN. However, after some time, when the
NN learned the new conditions, it was able to get rid of the
tracking error.

C. Comparison Between Different Approaches

Comparing the tracking performance of the different con-
trollers shown in Fig. 5 for the PD controller, Fig. 6 for the
PID controller, and Figs. 7 and 8 for the NN controller, the
superiority of the last one is clear. Even the PID cannot be
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(a) (b)

Fig. 8. Performance of the PD+NN control after learning. (a) Without additional friction. (b) With additional friction.

a better tracking controller than the NN controller under a
varying desired trajectory. In this situation, the PD controller
is better than the PID, but not as good as the NN controller.

In all cases, it is noted that the flexible modes are well
damped out by the controller. It is impossible to eliminate
the bending of the link (represented by under a varying
desired trajectory because that is part of its physics, but the
compensation of the higher frequency mode is evident.

Even though the NN tracking controller was not designed
to track a step function [see assumption given by (32)], it
was tested with a step desired trajectory for purposes of
comparison with the PD and PID controllers described above.
These controllers were tested with a step desired trajectory
with and without the extra friction term. The results are plotted
in Fig. 9.

Notice that the PD controller has good transient response
[Fig. 9(a)] but is not able to get rid of the steady-state error,
and it gets worse in the case of the extra friction [Fig. 9(b)].

Increasing the gains in this case improves the steady-state
error, but makes the transient response more oscillatory.

The PID controller presents a worse transient response with
a higher overshot [Fig. 9(c)], but tries to eliminate the steady-
state error, even though it is very slow [Fig. 9(d)]. It is possible
to increase the speed of the PID controller by increasing,
but that produces a bad transient response with a big overshot
and it is very oscillatory; in addition, the tracking performance
gets worse.

The NN controller presents a response which is a little
oscillatory, but the overshot is not too high [Fig. 9(e)], being
comparable to that of the PD controller, and it always takes
the steady-state error to zero, and it even is able to compensate
for the extra friction term [Fig. 9(f)]. In general, the NN
controller acts as a smart nonlinear integrator which is able
to compensate for the nonlinear dynamics of the link (learned
by the NN), taking the steady-state error to almost zero, even
in the presence of hard nonlinearities like friction.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Step response of the controllers. (a) PD control. (b) PD control with extra friction. (c) PID control. (d) PID control with extra friction. (e)
PD+NN control. (f) PD+NN control with extra friction.

V. CONCLUSIONS

The practical implementation of a multiloop nonlinear NN
tracking controller for a single flexible link has been tested
and its performance compared to that of the standard PD
and PID controllers. An extra friction term was added in the
implementation to show the ability of the NN controller to
learn and compensate for the nonlinearities.

The controller includes an outer PD tracking loop, a singular
perturbation inner loop for stabilization of the fast dynamics,
and an NN inner loop used to feedback linearize the slow
dynamics. This NN controller requires no off-line learning
phase, the NN weights are easily initialized, and it guarantees
boundedness of the tracking error and control signal.

The practical results corroborate the simulations showing
that standard PD or PID controllers are not able to track a
varying desired trajectory, while the NN controller takes the
tracking error to almost zero, readapting to any changes in the
model of the link (extra friction terms).

REFERENCES

[1] H. Asada, Z.-D. Ma, and H. Tokumaru, “Inverse dynamics of flexible
robot arms: modeling and computation for trajectory control,”J. Dynam.
Syst. Measur. Contr., vol. 112, pp. 177–185, June 1990.

[2] W. J. Book, “Modeling, design, and control of flexible manipulator arms:
A tutorial review,” inProc. 29th IEEE Conf. Decision and Control, Dec.
1990, pp. 500–506.

[3] S. Centikunt, B. Siciliano, and W. J. Book, “Symbolic modeling and
dynamic analysis of flexible manipulators,” inProc. IEEE Int. Conf.
Systems, Man, and Cybernetics, Oct. 1986, pp. 798–803.



318 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 45, NO. 2, APRIL 1998

[4] F.-C. Chen and C.-C. Liu, “Adaptively controlling nonlinear continuous-
time systems using multilayer neural networks,”IEEE Trans. Automat.
Contr., vol. 39, pp. 1306–1310, June 1994.

[5] A. De Luca and B. Siciliano, “Closed-form dynamic model of planar
multilink lightweight robots,”IEEE Trans. Syst., Man, Cybern., vol. 21,
pp. 826–839, July/Aug. 1991.

[6] G. G. Hastings and W. J. Book, “A linear dynamic model for flexible
robotic manipulators,”IEEE Contr. Syst. Mag., vol. 7, pp. 61–64, Apr.
1987.

[7] G. G. Hastings and W. J. Book, “Verification of a linear dynamic model
for flexible robotic manipulators,” inProc. IEEE Int. Conf. Robotics and
Automation, Apr. 1986, pp. 1024–1029.

[8] S. Haykin,Neural Networks. New York, NY: IEEE Press, 1994.
[9] F. Khorrami, “Analysis of multi-link flexible manipulators via asymp-

totic expansions,” inProc. 28th IEEE Conf. Decision and Control, Dec.
1989, pp. 2089–2094.

[10] P. V. Kokotovic, H. K. Kalil, and J. O’Reilly,Singular Perturbation
Methods in Control: Analysis and Design. London, U.K.: Academic,
1986.

[11] P. V. Kokotovic, “Applications of singular perturbation techniques to
control problems,”SIAM Rev., vol. 26, no. 4, pp. 501–550, Oct. 1984.

[12] P. V. Kokotovic, R. E. O’Malley Jr., and P. Sannuti, “Singular perturba-
tions and order reduction in control theory—An overview,”Automatica,
vol. 12, no. 3, pp. 123–132, Mar. 1976.

[13] F. L. Lewis, K. Liu, and A. Yesildirek, “Neural net robot controller with
guaranteed tracking performance,”IEEE Trans. Neural Networks, vol.
6, pp. 703–715, May 1995.

[14] F. L. Lewis, C. T. Abdallah, and D. M. Dawson,Control of Robot
Manipulators. New York: Macmillan, 1993.

[15] F. L. Lewis, K. Liu, and A. Yeildirek, “Neural net robot controller:
Structure and stability proofs,” inProc. 32nd IEEE Conf. Decision and
Control, Dec. 1993, pp. 2785–2791.

[16] J. Lin and F. L. Lewis, “Dynamic equations of a manipulator with
rigid and flexible links: Derivation and symbolic computation,” inProc.
American Control Conf., June 1993, pp. 2868–2872.

[17] S. H. Lin, S. Tosunolu, and D. Tesar, “Control of a six-degree-of-
freedom flexible industrial manipulator,”IEEE Contr. Syst. Mag., vol.
10, pp. 24–30, Apr. 1990.

[18] K. Liu and F. L. Lewis, “Hybrid feedback linearization/fuzzy logic
control of a flexible link manipulator,”J. Intell. Fuzzy Syst., vol. 2,
no. 4, pp. 325–336, 1994.

[19] S. K. Madhavan and S. N. Singh, “Inverse trajectory control and zero
dynamics sensitivity of an elastic manipulator,” inProc. 1991 American
Control Conf., June 1991, pp. 1879–1884.

[20] W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds.,Neural Networks for
Control. Cambridge, MA: MIT, 1991.

[21] K. S. Narendra, “Adaptive control using neural networks,” inNeural
Networks for Control, W. T. Miller, R. S. Sutton, and P. J. Werbos,
Eds. Cambridge, MA: MIT, 1991, pp. 115–142.

[22] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust
adaptation without persistent excitation,”IEEE Trans. Automat. Contr.,
vol. AC-32, pp. 134–145, Feb. 1987.

[23] M. M. Polycarpou and P. A. Ioannou, “Identification and control using
neural network models: Design and stability analysis,” Dept. Elect. Eng.
Syst., Univ. Southern California, Los Angeles, CA, Tech. Rep. 91-09-01,
Sept. 1991.

[24] G. A. Rovithakis and M. A. Christodoulou, “Adaptive control of
unknown plants using dynamical neural networks,”IEEE Trans. Syst.,
Man, Cybern., vol. 24, pp. 400–412, May 1994.

[25] N. Sadegh, “A perceptron network for functional identification and
control of nonlinear systems,”IEEE Trans. Neural Networks, vol. 4,
pp. 982–988, Nov. 1993.

[26] R. M. Sanner and J.-J. E. Slotine, “Stable adaptive control and recursive
identification using radial gaussian networks,” inProc. IEEE Conf.
Decision and Control, Brighton, U.K., 1991.

[27] B. Siciliano and W. J. Book, “A singular perturbation approach to
control of lightweight manipulators,”Int. J. Robot. Res., vol. 7, no. 4,
pp. 79–90, Aug. 1988.

[28] P. B. Usoro, R. Nadira, and S. S. Mahil, “A finite element/Lagrange
approach to modeling lightweight flexible manipulators,”J. Dynam.
Syst., Measur. Contr., vol. 108, pp. 198–205, Sept. 1986.

[29] M. W. Vandegrift, F. L. Lewis, and S. Zhu, “Flexible-link robot arm
control by a feedback linearization/singular perturbation approach,”J.
Robot. Syst., vol. 11, no. 7, pp. 591–603, 1994.

[30] D. Wang and M. Vidyagasar, “Transfer functions for a single flexible
link,” Int. J. Robot. Res., vol. 10, no. 5, pp. 540–549, Oct. 1991.

[31] A. Yesildirek, M. W. Vandegrift, and F. L. Lewis, “A neural network
controller for flexible-link robots,” inProc. IEEE Int. Symp. Intelligent
Control, Aug. 1994, pp. 63–68.
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