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Abstract 
The objective of this paper is to show the results of the 

practical implementation of a neural network tracking controller on 
a single flexible link and compare its performance to that of PD 
and PlD standard controllers. The NN controller is composed of an 
outer PD tracking loop, a singular perturbation inner loop for 
stabilization of the fast flexible mode dynamics, and a neural 
network inner loop used to feedback linearize the slow pointing 
dynamics. No off-line training or learning is needed for the NN. It 
is shown that the tracking performance of the NN controller is far 
better than that of the PD or PI0 standard controllers. An extra 
tXction term was added in the tests to demonstrate the ability of the 
NN to learn unmodeled nonlinear dynamics. 

1 Introduction 
In recent literature there have been many neural network 

controllers proposed for robot arms or other nonlinear systems 
[2],[ 13],[ 14],[ 16],[ 17],[ 1 8],[ 191. The performance of these neural 
net controllers on actual systems has been open to question, despite 
the fact that several of these references provide stability proofs. In 
this paper we implement the neural net controller derived in [23] 
on an actual single-flexible-link robot arm which could emulate, for 
instance, a tank gun barrel in DoD applications. It is found that the 
NN controller hr outperforms standard PD and PID controllers, 
even for the single-link arm which is basically linear except for 
nonlinear tXction effects. 

In [23], a tracking controller for a flexible-arm is designed 
using singular perturbation plus a NN feedback linearization inner 
loop. There, a modified output for tracking is defined that does 
correspond to practical tracking requirements. The structure of that 
controller includes an outer PD tracking loop, a singular 
perturbation inner loop for stabilization of the fast dynamics, and a 
neural network inner loop used to feedback linearize the rigid 

In this paper, we present some practical implementation results 
for a single flexible link for the controller designed in [23]. Despite 
the fact that the dynamics of a single flexible link is linear, an extra 
fiction term was added in the implementation to show the 
capability of the NN controller to compensate for nonlinearities in 
the model by learning. A comparison with the performance of 
standard PD and PID controllers is performed to show the superior 
tracking performance of the NN controller. 

2 Dynamics of a Flexible Link Robot Arm 
In [1],[3],[4],[5],[1 I] it is shown that the dynamics of any multi- 

(1) 
link Flexible Link Robot can be represented by 

with 
W ) B  + W , 4 ) 4  + K4 + m , 4 )  + G(q) = B(q)u 9 

.=E;] 
where q r  is the vector of rigid modes (generalized joint coordinates) 
and qy is the vector of flexible modes (the amplitudes of the 
flexible modes). M(q) represents the inertia matrix, D(q,q) is the 
Coriolis and centrifugal matrix, K is the stiffiess matrix, F(q,q) 
is the fiiction matrix, G(e) is the gravity matrix, B(q) is an input 
matrix dependent on the boundary conditions selected in the 
assumed mode shapes method, and U includes the control torques 
applied to each joint. 

The model (1) follows the same properties of any standard rigid 
link robot [I l l .  That is M(d is positive definite and upper and 
lower bounded, D(q,q) is bounded by d,(q)kl ,  and D(q,q) can 
be chosen such that &(q) - 2D(q,q) is skew-symmetric [ll]. 

3 Neural Net Control of Flexible Link Robots 

dynamics. & P b b  sin” Perturbation theory it is shown that 3.1 Singular perturbation Approach 
The singular perturbation approach basically consists in breaking 
the dynamics Of the srstem in two each Of them in a separate 
time scale [6],[7I,[S]. In this case the slow dynamics corresponds to 
the rigid modes qr and the fast dynamics corresponds to the 
flexible modes qfi 

presmibed trajectoQ’- For 

after stabilizing the fast dynamics, the slow dynamics can be 
amtrolled using the same approach used in [9] and [lo]. This 
approach avoids the requirement of the knowledge of fiction, 
gravity and coriolidmtripetal terms, or any regression matrix. In 
contrast to other NN controllers in the literature, there is no off-line 
learning phase, the NN weights are eFy to initialize without 

zero), and the controller guarantees boundedness of the tracking 
‘stabilizing initial weights’ (the weights are init ialid at The control objective is bat  qxt) dt), a 

purpose define the 
error and cuntrol signal. U = P+U,  (2) 
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where 

to obtain the slow subsystem equation 

and the fast subsystem equation 

is the slow component and UF is the fast component. 
Applying singular perturbation [21], (1) is split as in [20],[21] 

&=x?;'(-D&F-q+ii). (3) 

(4) 

or 

z- d5-A FG+ B F U F' ( 5 )  

with q = [ ~ ~  g . ] T ,  using a time scale r =  t l E  , and state 
variables defined by 

(6) 

(7) 

According to Tikhonov's theorem [6],[7] the original system (1) 

- 
s ,=5-5  
G E . 4  

,$ = g;pjl(-qGr - q! - G- + Bfq . 
where 

can be described to order E using (3) and (5) with 

(8) 
4 ,  = Tr +U(&) 
4,  = .'(S +5r )+ O(4 

with O ( E )  denoting terms of order E . 
Now define the tracking output 

(9) 

which corresponds to the slow Dart of the rigid-mode variables (e.g. 
of the link-tip motion). Assume that ( A , ,  B,)  is stabilizable, the 
fast system parameters have bounded uncertainties and 
perturbations (slow subsystem variables), and the slow system 
variables vary smoothly with time. The stabilizing assumption on 
(A,, B, ) is satisfied in practical systems and is far milder that the 
requirement for stable zero dynamics. Moreover, the definition (9) 
corresponds to practical tracking objectives in contrast to the 
''reftectedn outputs defined in [12],[22]. Under these assumptions a 
stabilizing control u,(t) can easily be designed using linear 
techniques (e.g. H ,  design) so that 

stabilizes (9, with given by (7). 

3.2 Neural Net Control of the Rigid Dynamics 
The slow dynamics given by (3) can be rewritten as 

am& +DmGr + F  +q = ii (1 1) 
which is exactly the Lagrange form of an n-link rigid robot arm, 
satisfying the standard robot properties. For this part a neural 
network controller can be designed [9],[10]. Note that Gm - 25,, 

is skew-symmetric. 
Given a desired trajectory qd(t) for ifr the tracking error is 

e=qd -q,. (12) 

r = e + A e ,  (13) 

(14) 

Define the filtered tracking error as 

where A = AT > 0 . Using (13), the arm dynamics can be rewritten 
in terms of the filtered tracking error as 

IT,,? = -5-r  - i~ + h(x) 

where the nonlinear robot function is 
(15) 

with x =[e' er F' $: t'r. It is assumed that h(x) is 

unknown. 
A neural network can be used to estimate h(x) based on the 
universal amroximation DroDerty of neural networks [9]. 

h(x) = @,,.(if)(& +Ae)+D,,(if,$)($d + A e ) + c ( $ ) + q ( q 3  

The estimate of h(x) is given by 
i ( x )  = & ( i T X ) ,  (16) 

Let 
z.1 v o  1 

o w  
L _I 

be the ideal weight matrix, which is unknown. 
The functional approximation error of the neural network is 

(18) 
which can be written using a Taylor expansion, assuming smooth 
activation functions, as 

(19) 
where 

X(X) = h(x) - i ( x )  

q x )  = P(6-  a?;,'.) + eTaFTX + w 

and the additional error term 
w(t)  = W T 3 ' Y T X  + WTO(VTX)* + E J X )  

w(t )  CO + clp#+ c2II4tzll. 

(21) 

(22) 
is bounded according to 

The jacobian O 1 is an easily computed function of i T x  . 
bounded so that 

with Z,,, a known boun4 and the desired trajectory is bounded 
according to 

It is assumed that the ideal weights of the neural network are 

I IZ l l ~  z m  (23) 

with Q a known bound. 

controller is defined by the following theorem [23]. 
Theorem 

Let the desired trajectory and the ideal unknown weights be 
bounded according to the assumptions. Let the control input for 
(1 1) be defined by 

Under all the assumptions stated above, a neural network 

i i = h ^ + ~ " r - v  , for K,  = K,' > O  (25) 

v( t )  = -K,(riH+ z,>r (26) 
with robustifying term 

and gain KZ2c2. 
Let the neural network weights be tuned by 

= M ( 6  - 2?Tx)rT -+!& 
(27) 

$ = NxrT@.'&'-Kllrl{N$ 

with any Constant matrices M = M T > O , N = N T > O ,  and a 
scalar design parameter K > 0 .  
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Then the filtered tracking error r(t) and the neural network 
weight errors F, @ are globally uniformly ultimately bounded. 
Moreover, the tracking error may be kept as small as desired by 

The proof of this theorem uses Lyapunov theory and is given in 
[23], where explicit bounds on 11r11 and llill are given. Notice that 

the training rules in (27) include the standard backpropagation 
terms plus an e-modification [I51 and a second-order correction 
term. Furthermore, the NN weights can be easily initialized at zero 
since the PD control stabilizes the system while the NN is learning. 
The NN controller is designed to control the robot arm while it is 
learning to improve the performance, hence no off line training is 
required. 

The overall structure of the controller defined in sections 3.1 
and 3.2 is shown in Fig. 1. 

increasing the gains K,. U 

4 Experimental Results 
A list of the main characteristics of the practical 

implementation is given bellow: 
Only the first two flexible modes were considered. 
The robust term v was not inbluded. K, was selected big 
enough to avoid the necessity of v. The manifold term was not 
included since the actual model of the flexible link is 
unknown. As shown by (3, the implementation of f would 
require the exact knowledge of the matrices of the model. 
Even though the dynamics for the flexible link with one 
degree of freedom is linear, an extra nonlinear friction term 
was added to check the capability of the controller to 
compensate for the nonlinearities in the model and changes in 
these nonlinearities. With this extra friction we were able 
emphasize the advantages of the PD+NN controller over the 
standard approaches. 
The neural network is composed of ten neurons in the hidden 
layer, with five inputs ( x  = [. e qd td g d r  ) and one 

output L ( x ) .  

The controller defined by (2), (lo), (25), and (27) was 
discretized with sampling period of 5ms. In the discretization 
process the differential equations in (27) were solved on line 
using trapezoidal integration. 
The software was implemented in LabView and C. 

Standard controllers PD and PID were implemented and tested 
in the flexible link test-bed to compare their performance with the 
PD+NN (PD and Neural Net) controller. This comparison allows 
us to show the advantages of the proposed controller over the 
standard controllers. 

4.1 PD control 
A PD controller was implemented using the control law 

U = Z + U F  

with 
- 
U = K,r = K,(e+ Ae) 

using the parameters K V = 3 6 ,  A = -  200 36 ’ Kpf =[-8 lo]; 

Kq = [0 Oland the reference signal qd = O.O5Sin(2@?) with 
frequency j % . S H z  

The performance of the tracking PD control without the neural 
network is illustrated in Fig. 2(a) without the extra friction term, 
and Fig. 2(b) with the extra fiiction term. Notice that the tracking 
error is very big, its magnitude is comparable to that of the 
reference signal. Even though the magnitude of the error decreases 
incrementing the controller gains, the tracking error is not 
eliminated. These characteristics are preserved in the presence of 
the extra friction term. 

4.2 PID Control 
A PID controller was implemented using the cuntrol law 

u = i i + u F  
with 

i i  = K,r + K, [e dt = K,(e+ Ae)+ K, [e dt 

using the parameters K, = 3 6 ,  A=- 2oo K, =loo ,  

K,, =[-8 lo], Kdf  = [ 8  01 and the reference signal 
qd = O.OSSin(Z@?) with frequency H . 5 -  

The performance of the tracking PID control is illustrated in 
Fig. 3(a) without the extra friction term, and Fig. 3(b) with the 
extra fiiction term. The integral part of the PID controller is 
supposed to eliminate the steady state error, but that only works for 
constant desired trajectories. In this case, with a varying desired 
trajectory, the tracking is even worse when the integral part is 
introduced (notice that the tracking error is bigger than with the PD 
control). As in the case of the PD controller, the PID controller is 
not able to compensate for the extra friction term. 

36 ’ 

4.3 NN+PD Control 
The neural net tracking controller was implemented as 

200 
described before using the parameters K, = 3 6 ,  A =- 

36 ’ 

K, = 0.2 , 2, =50, -=[o K# 01, 
E 

F = 2 ,  

G = 2 0 ,  ~=0.000001. This value of F in the practical 
implementation was enough. A bigger value produced a response 
very oscillatory. 
The reference signal was qd =O.O5Sin(2q8) with fiequenq 
f - o . S H Z  

The performance of the neural network tracking control is 
illustrated in Fig. 4 before the learning is complete and in Fig. 5 
after the learning is complete. The training of the neural network 
take less than one minute, after which the tracking error is reduced 
to almost zero. The learning is really active all the time (on-line 
training), but we refer to learning complete to the instant when the 
neural network have learned the model of the link under the actual 
conditions reducing the tracking error to almost zero. 

Notice in Fig. 5(a), without the extra friction term, and 
Fig. 5(b), with the extra fiction term, that the same controller 
learns the model of the link readapting to changes in it (changes in 
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the model like changes in fiiction characteristics). Without 
changing the parameters of the controller, the neural network 
controller is able to take the tracking error to almost zero in both 
cases. 

4.4 Comparison between different approaches 
Comparing the tracking p e r f i a n c e  of the different controllers 

shown in Fig. 2 for the PD controller, Fig. 3 for the PID controller, 
and Fig. 4 and Fig. 5 for the neural net controller, it is clear the 
superiority of the last one. Even the PID cannot be a better tracking 
controller than the neural network controller under a varying 
desired trajectory. In this situation the PD controller is better than 
the PID, but not as good as the neural network controller. Here the 
error is seen as a delay due to the fact that the desired trajectory is 
a sinusoid and the dynamics of the controller with the link 
produces at its output another sinusoid with different amplitude 
and phase. 

Even though the neural network trackmg controller was not 
designed to track a step function (see assumption given by (24)), it 
was tested with a step desired trajectory for purposes of comparison 
with the PD and PID controllers described above. These controllers 
were tested with a step desired trajectory with and without the 
extra fiiction term. The results are plotted in Fig. 6. 

Notice that the PD controller has good transient response 
(Fig. qa)) but is not able to get rid of the steady state error, and it 
gets worse in the case of the extra fiiction (Fig. qb)). Increasing 
the gains in this case improves the steady state error but makes the 
transient response more oscillatory. 

The PID controller presents a worse transient response with a 
higher overshot (Fig. 6(c)) but tries to eliminate the steady state 
error, even though is very slow (Fig. 6(d)). It is possible to 
increase the speed of the PID controller increasing K, but that 
produces a bad transient response with a big overshot and very 
oscillatory, besides the tracking performance gets worse. 

The neural network controller presents a response a little 
oscillatory but the overshot is not too high (Fig. 6(e)), being 
comparable to that of the PD controller, and it always takes the 
steady state error to zero, even it is able to compensate for the extra 
friction term (Fig. q4). There is less oscillation with the extra 
fiction term because of the extra damping that fiiction implies. 
The worse transient response of the PD+NN controller is explained 
by the fact that the desired trajectory (a step function in this case) 
have no bounded derivative, as it is required by the design. 
However, the main advantage of the NN+PD controller is that it 
does not require a priori knowledge of the model of the flexible 
robot arm and is able to compensate nonlinear effects that standard 
controllers don’t. 

5 Conclusions 
The practical implementation of a multiloop nonlinear neural 

network tracking controller for a single flexible link has been 
tested and its performance compared to the one of the standard PD 
and PID controllers. An extra friction term was added in the 
implementation to show the ability of the neural network controller 
to learn and compensate for the nonlinearities. 

The controller includes an outer PD tracking loop, a singular 
perturbation inner loop for stabilization of the fast dynamics, and a 
neural network inner loop used to feedback linearize the slow 
dynamics. This NN controller requires no off-line learning phase, 

the NN weights are easily initialized, and guarantees boundedness 
of the tracking error and control signal. 

The practical results corroborate the simulations showing that 
standard PD or PID controllers are not able to track a varying 
desired trajectory, while the neural network controller takes the 
tracking error to almost zero readapting to any changes in the 
model of the link (extra fkiction terms). 
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. .  ’ RigidDynamics ............................ 
[* ‘I 1-q K” 

Tracking loop 

Fig. 1. Overall control structure of the neural network controller 
for a flexible link robot. 
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(a) (b) 
Fig. 2. Performance of the PD control. (a) Without additional 
friction. (b) With additional friction. 

(a) (b) 
Fig. 3. Performance of the PID control. (a) Without additional 
Wction. (b) With additional fiiction. 
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(a) (b) 
Fig. 4. 
(a) Without additional friction. (b) With additional fiiction. 

Performance of the PD+NN control before learning. 

111 . . I I, 

(a) (b) 
Fig. 5. Performance of the PD+NN control after learning. (a) 
Without additional friction. (b) With additional fiiction. 

...... ...... 

(e) (0 
Fig. 6. Step response of the controllers. (a) PD control. (b) PD 
control with extra friction. (c) PID control. (d) PID control with 
extra Wction. (e) PM-NN control. (0 PmNN control with extra 
Wction. 
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