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ABSTRACT

IMPLEMENTATION OF A NEURAL NET TRACKING CONTROLLER FOR A
SINGLE FLEXIBLE LINK: COMPARISON WITH PD AND PID

CONTROLLERS

Publication No.

Luis Benigno Gutiérrez, M.S.

The University of Texas at Arlington, 1996
Supervising Professor: Frank L. Lewis

The objective of this thesis is to show the results of the practical implementation of
a neural network tracking controller on a single flexible link and compare its performance
to that of PD and PID standard controllers. The NN controller is composed of an outer
PD tracking loop, a singular perturbation inner loop for stabilization of the fast flexible
mode dynamics, and a neural network inner loop used to feedback linearize the slow
pointing dynamics. No off-line training or learning is needed for the NN. It is shown that
the tracking performance of the NN controller is far better than that of the PD or PID
standard controllers. An extra friction term was added in the tests to demonstrate the

ability of the NN to learn unmodeled nonlinear dynamics.
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CHAPTER 1
INTRODUCTION

In recent literature there have been many neural network controllers proposed for
robot arms or other nonlinear systems [4],[25],[261,[291,[30],[311,[32]. The performance
of these neural net controllers on actual systems has been open to question, despite the
fact that several of these references provide stability proofs. In this paper we implement
the neural net controller derived in [40] on an actual single-flexible-link robot arm which
could emulate, for instance, a tank gun barrel in DoD applications. It is found that the NN
controller far outperforms standard PD and PID controllers, even for the single-link arm
which is basically linear except for nonlinear friction effects.

The control of flexible link robot arms belongs to a class of problems characterized
by having reduced control effectiveness and an additional unstable zero dynamics. Some
other problems in this category are large-scale space structures, overhead gantry cranes,
and other industrial processes. The requirement of controllers with faster response and
higher accuracy introduces a challenge that the researchers have faced in different ways.

Several researchers [24],[37] have observed that the approximate flexible-link robot
arm dynamics is input-output feedback linearizable but the zero dynamics is not
asymptotically stable when the tip position is taken as the output. To control the arm, a
modified output was defined to yield stable zero dynamics. However, this output does not

correspond to practical tracking objectives except in the set-point command case. In [34],
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[36] input-output feedback linearization and a singular perturbation correction term [15]
to stabilize the internal dynamics was used to control a multi-link flexible arm. Finally, in
[22] a Lyapunov approach is used to stabilize a component of the tracking error, but not
the tracking error in its entirety.

There are different control techniques for rigid robot arms available in the literature.
These techniques require an exact knowledge about the nonlinear terms (computed
torque), knowledge of bounds on uncertainties (robust control), or knowledge of a
nonlinear regression matrix of robot functions (adaptive control) [19]. In practice it is very
difficult to have such a priori knowledge of the arm dynamics, especially in the presence of
frictional terms which may not have a known dynamical form.

To overcome these limitations a neural net tracking controller for a rigid link robot
arm has been devised in [17],[20]. In this scheme there is an outer PD tracking loop with
the neural network used in a feedback linearization inner loop. The weight training rules
include an e-modification term [27] and a term corresponding to a second-order term.
Using a Lyapunov approach it is shown that these training rules guarantee tracking
performance and bounded weights even though there do not exist ideal weights such that
the neural net perfectly reconstructs the nonlinear robot function.

In [40], a tracking controller for a flexible-arm is designed using singular
perturbation plus a NN feedback linearization inner loop. There, a modified output for
tracking is defined that does correspond to practical tracking requirements. The structure
of that controller includes an outer PD tracking loop, a singular perturbation inner loop for

stabilization of the fast dynamics, and a neural network inner loop used to feedback
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linearize the rigid dynamics. Applying singular perturbation theory it is shown that after
stabilizing the fast dynamics, the slow dynamics can be controlled using the same approach
used in [17] and [20]. This approach avoids the requirement of the knowledge of friction,
gravity and coriolis/centripetal terms, or any regression matrix. In contrast to other NN
controllers in the literature, there is no off-line learning phase, the NN weights are easy to
initialize without known ‘stabilizing initial weights’ (the weights are initialized at zero),
and the controller guarantees boundedness of the tracking error and control signal.

In this thesis, some practical implementation results for a single flexible link for the
controller designed in [40] are presented. Despite the fact that the dynamics of a single
flexible link is linear, an extra friction term was added in the implementation to show the
capability of the NN controller to compensate for nonlinearities in the model by learning.
A comparison with the performance of standard PD and PID controllers is performed to

show the superior tracking performance of the NN controller.



CHAPTER 2
BACKGROUND

2.1. Control of Flexible Link Robots

Some of the approaches that have been used before to control flexible link robots
are discussed here.

In [34], the singular perturbation approach is proposed to control a flexible
manipulator. The control action is composed of a slow component designed for the slow
subsystem, and a fast component designed to stabilize the fast subsystem around the
equilibrium trajectory set up by the slow subsystem under the effect of the slow control.
This approach is followed in [36] using a computed torque technique to control the slow
subsystem. These methods represent the dynamics of the flexible manipulators using a
Lagranian-assumed modes formulation.

In [33] the singular perturbation method was used for a two-link flexible
manipulator. In contrast to the methods mentioned before, the dynamics of the flexible
manipulator was represented by a distributed parameter model. In this case, the slow
control is a decentralized torque control which approximately linearizes the reduced order
model and adds a PI control for trajectory tracking. The fast control is a distributed
actuator (a piezoelectrically active film) used to dampen the flexural vibrations.

All of the following control strategies are based in the Lagranian-assumed modes

formulation for the dynamics of the flexible manipulators.
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In [24] the trajectory tracking control of the tip position of a two-link elastic
manipulator based on nonlinear inversion and linear stabilization was considered. The
outputs were chosen as the sum of the joint angle and tip elastic deformation times a
constant factor for each link. This way, the problem of unstable zero dynamics in the
closed-loop system when the exact tip position is taken as output was avoided. A linear
stabilizer was designed for the zero dynamics. The effectiveness of this strategy was
checked through simulations but no formal proof of the closed loop stability of the system
was given.

In [37] the transfer function of a single flexible link was obtained using the
Lagranian-assumed-modes approach. It was shown that the transfer function becomes ill
defined when the number of modes retained in the model is increased if the tip position is
taken as output. Taking the tip position minus the elastic deformation as the output, the
transfer function becomes well-defined with a relative degree of two. An H,-optimal
controller was found and simulations were performed to illustrate the advantages of the
proposed transfer function.

In [39] the control of a class of manipulators with a single flexible link was
addressed. The state space equations of the manipulator were transformed into an
equivalent set of equations that are almost linear. The controller used a nonlinear state
feedback which was designed based only in the linear part of the transformed equations,
and was combined with an observer. This scheme was shown to be input-output stable in a

local sense.
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In [28] a controller for a two-link flexible arm was designed based on variable
structure system (VSS) theory. The joint angles were controlled using a variable structure
control (VSC) law which included the integral of the tracking error, and the elastic
oscillations of the links were stabilized using the pole assignment technique. It was shown
that the closed loop system including the sliding mode controller is stable.

In [23] a feedback linearization/fuzzy logic controller for a flexible link manipulator
was designed. In this scheme a reduced order computed torque (ROCT) control was first
used to linearize the whole system to a Newton’s law like system, then a fuzzy logic
controller consisting of 33 condition-action rules was used to command the rigid modes to

track the desired trajectories while maintaining the residual vibrations as small as possible.

2.2. Applications of Neural Networks for Control
Inspired in the model of the human brain, researchers have developed the so called
artificial neural networks [11],[18]. A neural network (NN) is a system composed of the
interconnection of many simple nonlinear elements called neurons. Each neuron
(sometimes called perceptron) obtains its output from the application of a nonlinear
function (called activation function) to a linear combination of its inputs plus a threshold

(figure 1). Therefore, for a single neuron we can write
y=0{(¥v'x) (2-1)

with

x={1 % % x I, v=[v, v, v, = vT, (2-2)

where y is the output, X1, X,..., X, are the inputs, v, is the threshold , vi, v2,..., v, are the

weights, and o () is the activation function.
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Fig. 1. Representation of a neuron.

A common choice of the activation functions are the sigmoid functions. These are
monotonically non-decreasing functions taking on bounded values at -0 and +oo. For the
use of the backpropagation training algorithm it is required that the sigmoid function be
differentiable. The activation functions used in this thesis are the sigmoid functions defined
by

oY, 3

where « is a parameter that determines the slope of the sigmoid function around zero.

See figure 2.
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Fig. 2. Sigmoid activation function.

Having several neurons with the same inputs we can construct a one-layer NN

(figure 3) which is defined by
y=c('x),
with
E=llome, e tn T gl 0 o Bl
where y is the output vector (with the / outputs y1, y»,..., Y1), X1, X2,

V is the weights matrix given by

(2-4)

(2-3)

..., X, are the n inputs,

(2-6)
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where the first column contains the thresholds, and the other columns are the weights, and

o (@) 1s the activation function vector given by

0_1(21) Z
O, Z iz 1
O'(Z) = 2(. 2) for z= :2 and o, (z) = TR (2_7)
- o,(z) z;
B!
W
V3
- o

Fig. 3. One-layer neural network.

It was found by the researchers that the one-layer NN could not approximate many
simple functions. For example, AND, OR, and NOT logic operators can be constructed
using one-layer NN, but not the XOR logic operator [18]. Later it was found that a two-

layer NN could approximate a XOR logic operator and more complicated functions, this
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motivated a lot of research in the multilayer NN (sometimes called multilayer perceptron).
A two-layer NN (figure 4) is defined by

y=c W' oV x)) (2-8)

with
=1 x x - xI.y=Dn 5 = Wl @2)
where y is the output vector (with the m outputs Y1, ¥2,..., Ym), X1, X2,..., Xa are the n

inputs, ¥ is the input weights matrix given by

Yio Ya Vo " Vi
A% A% 2% 2%
T 20 Yu Vn 2n ?
pr | ) (2-10)
Vie Van Vn Vin

Wio Wi Wi Wy
Wy, Wy Wy o0 Wy

WT - 20 '21 22 :2 . (2_1 1)
w w w w

where the first column contains the thresholds, and the other columns are the weights, and

o (e) is the activation function vector with the appropriate number of components for
each case. The first layer of neurons is referred as the hidden layer since its outputs are not
seen at the outputs of the NN. The activation function vector includes a 1 in the first
component for the hidden layer (that is, in the computation of z = & (V"x), where z is the
vector of the outputs of the neurons in the first layer). This makes easier to include the

thresholds in the formulation of (2-8).
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Fig. 4. Two-layer neural network.

Neural networks like the ones defined in (2-4) or (2-8) are static (they contain no
integrators or time delays). There are many kinds of dynamic NN in which some of the
signals are fed back through integrators or delay units. One of the most familiar dynamic
NN is the Hopfield NN.

In most of the applications to Digital Signal Processing (DSP), the classification,
association, and pattern recognition properties of neural networks are used. In such
applications the main purpose of the neural networks is to distinguish between different
inputs associating them with the closest of a set of exemplar patterns.

A NN like the one defined in (2-8) has an important property called “universal

approximation property.” In closed loop control applications the universal approximation
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property of multilayer NN is of great importance. This property is stated in the following

theorem.

Theorem: Universal Approximation Property of the NN
Let f(x):R" — R™ be a smooth function. Then , given a compact set § € R" and

a positive number &, , there exists a two-layer NN such that
fx)=W'o(V'x)+e (2-12)
with |l <g, for all x €S, for some (sufficiently large) number L of hidden layer
neurons. £ is generally a function of x and is called the NN function approximation error.
£ decreases as L increases. O
A key issue in the success of the applications of neural networks is the training
algorithm used to select the weights. The training of the NN consists in updating the
weights using certain rules which could be continuous (differential equations) or discrete
(difference equations). This training is what gives the NN learning capabilities. There are
three categories for the learning schemes: supervised learning, unsupervised learning, and
reinforcement learning. When the information needed to train the NN is known a priori
(the pairs of inputs and desired outputs are known) supervised learning is used. In this
case there is a “teacher” which applies the inputs and change the weights based on the
error respect to the desired outputs. In unsupervised learning there is no teacher with
global information to train the NN, so the training is performed based on local data which

is examined and organized according to emergent collective properties. Finally, in
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reinforcement learning, the weights associated with a particular neuron are changed in
proportion to some global reinforcement signal.

In the operation of a NN there are two phases: the learning phase, when the NN is
trained, and the operational phase, when the NN performs its design function. A NN is
said to use off-line learning if the learning phase is carried out first and then the
operational phase occurs with the weights fixed at the values obtained in the learning
phase. This kind of learning is used in most DSP applications and some open lioop control
applications. On the other hand, in on-line learning the learning phase and the operational
phase occur at the same time, so the NN learns while it is operating in the actual
application. This kind of learning is common in closed loop control applications. For
instance, the controller discussed in this thesis falls into this category.

Here, the backpropagation training algorithm is briefly discussed, since it is the one
that concerns more with the application presented in this thesis. This algorithm is a
gradient descent algorithm for multilayer neural networks. Considering the two-layer NN
from equation (2-8) the algorithm can be divided in three stages for each iteration.

First, the NN is presented with an input pattern X and its output is computed using

z=c(W'x), (2-13)
and

y=0oF"2). (2-14)
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Second, given the desired output Y for the input X, a backward recursion is used to

compute the backpropagated errors

e=Y-y
82=y(1-y)e, ; i=12,..m :

yz( yz) i (2_15)
5l=z(1- z,)Zw g sl 0

Finally, the NN weights and thresholds are updated by

W=W+ns
V=V+ns'X"’ )
where
5 85
5! D
o' = :2 and &= :2 (2-17)
5t 52

and 7 is the learning rate, which in some cases is varied adaptively. The iterations should

be repeated until the output error has become sufficiently small.



CHAPTER 3
DYNAMICS OF A FLEXIBLE LINK ROBOT ARM

In [5],[6],[91,[101,[21] it is shown that the dynamics of any multi-link Flexible Link

Robot can be represented by

M(q)§+D(q,9)4 +Kq+F(q,9)+G(q) = B(q)u, (3-1)

o LJJ

where g, is the vector of rigid modes (generalized joint coordinates) and gy is the vector of

with

flexible modes (the amplitudes of the flexible modes). M(q) represents the inertia matrix,
D(q,q) is the Coriolis and centrifugal matrix, K is the stiffness matrix, F(q,q) is the
friction matrix, G(g) is the gravity matrix, B(g) is an input matrix dependent on the
boundary conditions selected in the assumed mode shapes method, and includes the
control torques applied to each joint.

The model (3-1) follows the same properties of any standard rigid link robot [21].

That is M(g) is positive definite and upper and lower bounded, D(q,q4) is bounded by

d, (q)"ql ,and D(q,q) can be chosen such that M(q) -2D(q,qg) is skew-symmetric [21].

There are different ways to obtain the model of a flexible arm [12]: using the

Lagranian method or the Euler-Newton method, using a modal expansion (assumed

i
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modes method) or a finite elements method, using the Hamilton’s principle, and using
nonstructural modeling.

Here, the dynamic model of a single flexible link is obtained using the Lagranian-
assumed modes method as shown in [10],[37]. It is assumed that the height of the beam is
much greater than the width, so the beam is constrained to move in the horizontal
direction. The effects of shear deformation and rotary inertia are neglected and the
deflections of the beam are assumed to be small. The beam has a moment of inertia J,, a
mass density p, a cross section 4, and a length /4. The elastic deformation of the beam at a
distance x from the hub is w(x,7). The beam is assumed to be fixed to the shaft of the
motor which produces a torque u. A coordinate frame x’-y’ is attached to the flexible link
at the point where the beam is attached to the motor hub. This frame rotates with the
beam respect to the base coordinate frame xo-y, such that the slope of the beam at x=0 is
always zero respect to x’-)” (see figure 5). The rotation angle of x’-y’ respect to xo-yp is
the rigid mode q.

The elastic deformation is modeled by the Bernoully-Euler equation ([7],[8])

O*w(x,t)  EI 3*w(x,1)
[ T T

(3-2)

subject to the clamped-free boundary conditions

w(0,/)=0 , w'(0,)=0 , w'(h,t)=0 , w"(ht)=0. (3-3)
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Fig. 5. Coordinate frames for the single flexible link.

In the assumed-modes method the deformation w(x,f) is expanded in a series of the

form

w(x,1) = 2.4, ,(x) (3-4)
i=1
where q,(?) is the amplitude of the flexible mode i which is only function of 7, ¢ ,(x) 1is

the eigenfunction for mode i which is only function of x, and # is the number of modes
retained in the model.
Equation (3-2) is solved using separation of variables obtaining the following

ordinary diferential equations for q,,(¢) and ¢ ,(x)

dzq L£i ()

dr +o 2(1fi(t) =0 (3-5)
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%@—ﬁ“ﬁ(}c):o (3-6)
with
2
p*= gﬁﬂg* (3-7)
The solutions for these equations, under the boundary conditions of (3-3), are
qf,.(t) = A cos(w t+a ;) (3-8)
and

(sinf3 h+ sinh B h)
(cosf ,h+coshf h)

$.(x)=c¢ [(Sinﬂ X —sinh 8 ,x) - (cosf ,x —cosh B ,.x)} (3-9)

where the 3, are the solutions to
cosf hcosh B .h=—1 (3-10)

and ¢; are the constants that normalize the eigenfunctions so that

(400 de=1 (3-11)
To derive the dynamic model of the link, the Lagranian L=XK —V is first

computed. The position of a point on the beam at a distance x from the hub is given by

= xcosq, —wsing, 3.12)
) xsing, +wcosq, |’ G

hence

PTP = x*G? +W* +2Wxq, +w'q., 6-13)
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so the kinetic energy is

i

et
X th3+§jo'PTPdm

2
1o g od et o L, Llpen B! 1ol e (3-14)
== Jud; +—2—I0 x> dm G’ +5J-0 W dm +j0wxq, dm+—2-j.0 w? dm §’
where Jj, is the hub inertia. The potential energy is
1en (2w
V:—Z—LEI(E—XTJ dx | (3-15)
Assuming that w is very small, the expression
- 2
jo (x* +w*) dm (3-16)
can be approximated by
h
— 2 s
Tl iy (3-17)
The Lagranian L = K —V can be found to be
L__l_JJ.z ln.z -n-J‘]1 d __l_i22
= 2( y T4 + ZEQﬂ +qrEin 0¢ X am— 5 iZIina) i (3-18)

Using g, and ¢,(?) as the generalized coordinates and applying the Euler-

Lagrange equations, the equations of motion are obtained

doL oL

dt 4, 9q,
sl Pl i e G2
d{ qu-f, ﬁqu e > TR Tl Sl )

Substituting (3-18) into (3-19) gives the model of the flexible link

M(q)§ +D(q,9)q + Kq = B(q)u (3-20)
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where the inertia matrix is

tdy. ¥ 72 Vn
e m O 0

M@= 7, 0 m 0 G-21)
. O 0 s

with m the mass of the beam and

h
¥, :L¢ixdm bl (3-22)
the stiffness matrix is
[0 0 0 0
0 w; O 0
k=0 0 @, 0 |, (3-23)
R R o? ]
and
[1/m
0
B(g)=| 0 |. (3-24)
L 0]

The matrix D(q,q) includes the damping factors &, for the flexible modes g,

0 0 0
0 2.0, 0
D(q,CI) =10 0 24' 20 5

|

{ov TR o s

(3-25)




CHAPTER 4
NEURAL NET CONTROL OF FLEXIBLE LINK ROBOT ARMS

4.1. Singular Perturbation Approach

The singular perturbation approach basically consists in breaking the dynamics of
the system in two parts, each of them in a separate time scale [14],[15],[16]. In this case
the slow dynamics corresponds to the rigid modes ¢, and the fast dynamics corresponds to
the flexible modes g, In order to apply singular perturbation, (3-1) can be split as in
[34],[36]

4, =-D.4,-Dyg, - K4, - F' -G + Bu

. ) : : 4-1
G = D4, — Dyd; ~Kg4, —F; ~G; + Byu d
Now introduce the scale factor ¢ and define
e (4-2)
where 1/ g is the smallest stiffness in K_;,h Define
K, =K. (4-3)

Then

g, =—D(0)d, - Dy(O)E - H, (1] 8K (q,,6°8)e°¢ ~ F) (4,,6°8) — G;(q,,6°8) + B, (q,.8 O

£¢ = -D,(0)4, - Dy (0’6~ (11 YK (q,,6°0) e’ ~ F(4,,6°8) — G1(q,,€°8) + By (q,.6 O)u

(4-4)

21
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where 0=(q,,q,,£& ¢2&). Here is considered the case in which the stiffness of the links is
sufficiently large so ¢ is sufficiently small. The control objective is that g,(f) should track
q4(0), a prescribed trajectory. For that purpose define the control

u=1u+u, (4-5)
where # is the slow component and uy is the fast component.
To obtain the equations for the slow dynamics, set & = 0 in (4-4) to obtain
§ =-Di -H,R,E-F -G +B'7 (4-6)
and the algebraic slow manifold equation
0=-Dlg —H K2 -F -0 +B, 4-7)
which is solved for the slow variables
E=K;H;(-Dig,-F} -G} +Bi). (4-8)
Substituting (4-8) in (4-6), we get
§,= M;}(-D,3,~F, -G, +). (4-9)

For the fast subsystem define the states

L=l
B (4-10)
with a time scale 7 = ¢/ ¢ resulting in
o
dr ’ (4-11)
dg,



since d%h ~0.
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Setting £ =0 and substituting from (4-8) the fast dynamics is found to

difm 9 dlgd W (4-12)
df{gz}—li_ﬁﬁfﬂ 0}[@}{5} e

d

d~i=AFg+BFup, (4-13)

with ¢ =[¢7 &7 .

According to Tikhonov’s theorem [14],[15] the original system

(4-1) can be described to order £ using (4-9) and (4-13) with

q,. =4, +_0(£) (4-14)
g; =& +5)+0(s)

with O(¢g) denoting terms of order ¢ .

Now define the tracking output

7| (4-15)

ql‘

which corresponds to the slow part of the rigid-mode variables (e.g. of the link-tip

motion). Assume that (4,,B,) is stabilizable, the fast system parameters have bounded

uncertainties and perturbations (slow subsystem variables), and the slow system variables

vary smoothly with time. The stabilizing assumption on (A4, B;) is satisfied in practical

systems and is far milder that the requirement for stable zero dynamics. Moreover, the

definition (4-15) corresponds to practical tracking objectives in contrast to the “reflected”
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outputs defined in [24],[37]. Under this assumptions a stabilizing control u,(f) can be

designed using linear techniques (e.g. H,, design) so that

-

c; K Koo —
Up = "[Kpp KdF]]:gl:I sk L_I;F U ;F q;+ KpF-f (4'16)
2

stabilizes (4-13), with & given by (4-8).

4.2. Neural Net Control of the Rigid Dynamics

The slow dynamics given by (4-9) can be rewritten as
M G +D,g +F +G, =u (4-17)
which is exactly the Lagrange form of an n-link rigid robot arm, satisfying the standard
robot properties. For this part a neural network controller can be designed [17],[20]. Note
that M —2D, is skew-symmetric.
Given a desired trajectory g4(?) for g, the tracking error is
e=q, -7, . (4-18)
Define the filtered tracking error as
r=é+Ae, (4-19)
where A = A’ >0. Using (4-19), the arm dynamics can be rewritten in terms of the
filtered tracking error as
M _#=-D,r—u+h(x) (4-20)
where the nonlinear robot function is

h(x) =M, (@)q, + Aé)+ D,(7.9)@, + Ae) + F,(4) + G,(7) (4-21)
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with x = [e g 4 ]T. It is assumed that A(x) is unknown.

A neural network can be used to estimate A(x) based on the universal approximation

property of neural networks (2-12). This estimate is given by
l;(x) = WTG(I;'Tx) " (4-22)

let

Voo
Zel (4-23)

be the ideal weight matrix, which is unknown..

The functional approximation error of the neural network is
7 (x) = h(x) - A(x) (4-24)

which can be written using a Taylor expansion, assuming smooth activation functions, as

RHe) =W (6-6VIx)+W' 6V x+w, (4-25)
where
= Y
G=0Wx), e 522) , (4-26)

and the additional error term
w(t) =WV x+W' O "x)* +¢, (x) (4-27)
is bounded according to

w(1) < C, +C,|1Z] + G, Iz . (4-28)

The jacobian ¢ ' is an easily computed function of Vix.
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It is assumed that the ideal weights of the neural network are bounded so that
1Zzl< z, (4-29)

with Z,, a known bound, and the desired trajectory is bounded according to

94
44| <0 (4-30)
44

with O a known bound.

Definition

The solution to
x=fut), y=gxt)
is globally uniformly ultimately bounded (GUUB) if for all x(#) there exists an & >0 and
anumber 7(&,x,) such that ”x(t)" <g forall £2¢,+7. g
Under all the assumptions stated above, a neural network controller is defined by

the following theorem [40].

Theorem
Let the desired trajectory and the ideal unknown weights be bounded according to

assumptions. Let the control input for (4-17) be defined by
a=h+Kr-v , for K,=K'>0 (4-31)
with robustifying term |
(1) = K, (2] + Z,)r (4-32)

and gain K>(C5.
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Let the neural network weights be tuned by

Vf’: MG -6V x)” jK“f”MW 4-33)
V = Nxr "W’ &'—«|r|NV
with any constant matrices M = M" >0, N=N" >0, and a scalar design parameter
Kk >0.

Then the filtered tracking error 7(?) and the neural network weight errors /', W are
GUUB. Moreover, the tracking error may be kept as small as desired by increasing the
gains K. O

The proof of this theorem uses Lyapunov theory and is given in [40], where explicit
bounds on ||| and “2“ are given. Notice that the training rules in

(4-33) include the standard backpropagation terms plus an e-modification [27] and
a second-order correction term. Furthermore, the NN weights can be easily initialized at
zero since the PD control stabilizes the system while the NN is learning. The NN
controller is designed to control the robot arm while it is learning to improve the

performance, hence no off line training is required.

4.3. Overall Control Structure
The overall structure of the controller defined in sections 4.1 and 4.2 is shown in

figure 6.
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7
l Feedback linearization loop

e 3 Rigid Dynamics
9 T ssiis A 14
u Flexible : 5
i a4 3 ks Link Amm [~
- “iv ,:
Robust FastPD ||
Term Gains
Tracking loop B [ :

Fig. 6. Overall control structure of the neural network controller for a flexible
link robot.

4.4. Simulation

The simulation of the neural network controller was performed for a single flexible
link. The model of the flexible link included three flexible modes even though the
controller only compensated the first two modes (this was to corroborate that the
controller work well even compensating only a finite number of modes). The model was
obtained as described in [10], using the parameters of the flexible link test-bed at the
Automation and Robotics Research Institute (ARRI). The modal frequencies for the first

three modes for this flexible link are 1.6Hz, 10.0Hz, and 28.1Hz.
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The controller used the following parameters:

K, =36

e
186

K =02

% 0

K

—-=[-8 10]

K‘ZT

—=[o ]

The neural network in the controller included ten neurons in the hidden layer and

used the following parameters

F=20
G=20
x = 0.000001

The activation functions for the neurons in the hidden layer were selected as the

sigmoid functions
O'(Z)'—-——-—-——l fork=1 2 10; a=1
k jae kaz li&5eis >

It was observed in practice that with the sigmoid functions defined this way, the neural
network learned faster and was able to reduce more the tracking error.

The results of the simulation are plotted in figure 7. Notice that after some time the
neural net learns the model of the link reducing the tracking error to almost zero. Using a
bigger value for the learning rates / and G improved the tracking performance (faster
learning and less tracking error), but produced a worse transient response (more

~

oscillatory) and more excitation of the flexible modes (increased the magnitude of g, ).
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Fig. 7. Simulation of the neural network controller with a single flexible link.
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CHAPTERS

IMPLEMENTATION OF THE CONTROLLER IN THE

FLEXIBLE-LINK TEST-BED

The neural network controller discussed in chapter 4 was implemented on a single

flexible link test-bed at the ARRI and some of the results obtained are presented here.

S.1. Description of the Implementation
The actual structure of the controller implemented in the test-bed at the ARRI is
shown in figure 8. A list of the main characteristics of the practical implementation is given

bellow:

Only the first two flexible modes were considered.

e The robust term v was not included. K, was selected big enough to avoid the necessity
of v. The manifold term was not included since the actual model of the flexible link is
unknown. As shown by (4-8), the implementation of f_ would require the exact
knowledge of the matrices of the model.

e Even though the dynamics for the flexible link with one degree of freedom is linear, an

extra nonlinear friction term was added to check the capability of the controller to

compensate for the nonlinearities in the model.

e The neural network is composed of ten neurons in the hidden layer, with five inputs

(xz[e € Gy 4s é?d]T)andoneoutputi;(x).
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e The controller defined by (4-5), (4-16), (4-31), and

e (4-33) was discretized with sampling period of 5ms. In the discretization process the

differential equations in

e (4-33) were solved on line using trapezoidal integration.

Feedback linearization loop

Rigid amics

|0 T I
. é Eoae e s |
" : s [ Feable | ¥
[A I] : = Link Arm | %

FastPD | [

Gains :

Frackinpgdoopi 1 T UL oL e L SRR e e s R

Fig. 8. Actual neural network controller implemented at ARRI's flexible link
test-bed.

Figure 9 shows a picture of the flexible link controller implementation at ARRI. A
block diagram describing the practical implementation of the controller is shown in
figure 10. The hardware includes the interface cards and external components necessary

" for the measurement of the angular position of the link ¢, and the flexible modes ¢, and
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q s, (optical encoder, strain gauges, signal conditioners, and analog to digital converters).
Estimated values of ¢,, ¢,,, and §,, are calculated based on consecutive samples of g, ,
9r1-and q,, respectively. Besides there is a digital to analog converter connected to the

servo amplifier that drives the servo-motor for the link.

Fig. 9. Flexible link controller implementation at ARRI.

The software was implemented in LabView and C. The routines that perform the
control action in real time are implemented in C. The execution of these external routines
is fired periodically by the computer timer routines. The control routines sample the
external signals and use the parameters defined in the parameters buffer to calculate the

" control signal . Some of the signals are stored in the signals buffer allowing the LavView



Graphic User Interface
(LabView VI’s)

Parameters Buffer Signals Buffer

NN+PD Controller Algorithm

Software (Extemal C routines linked to LabView VI’s)
implemented in
the computer u Vs2 Va q
_________ Buseal e B s e | s e b
Hardware
4 & Interfaces
Flexible Link
Strain Gauges
[= —— 1
V.
Signal 2
Conditioner ~n
Signal Vst S
u Servo Conditioner
D/A Servo Amp.
Motor
Optical Conversion |_counts
Encoder to Digital

Fig. 10. Block diagram of neural network controller implementation at ARRI's
flexible link test-bed.

VI’s to monitor them. A listing of the C code of the fuctions more relevant in the .

. inplementation of the NN controller is given in appendix A.
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The LabView VI’s work as a graphic user interface that allows to start the
controller, change the mode of operation, define the reference signals, change the
parameters of the controller, and monitor the signals through charts and graphics. These
VTI’s are linked to the external C routines which run in the background in real time. The
communication between the external C routines and the LabView VI’s is accomplished
through some VI’s that read from and write to the buffers using CIN’s (Code Interface

Nodes).

5.2. Experimental Results in the Flexible Link Test-bed

Standard controllers PD and PID were implemented and tested in the flexible link
test-bed to compare their performance with the PD+NN (PD and Neural Net) controller.
This comparison allows us to show the advantages of the proposed controller over the

standard controllers.

5.2.1. PD control
A PD controller was implemented using the control law
Uu=1u+u,

with

using the following parameters

K, =36
200
e
K, -[-% 1
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and the reference signal
q, = 0.058in(2xft)
with frequency f=0.5Hz.

The performance of the tracking PD control without the neural network is
illustrated in figure 11(a) without the extra friction term, and figure 11(b) with the extra
friction term. Notice that the tracking error is very big, its magnitude is comparable to that
of the reference signal. Even though the magnitude of the error decreases incrementing the
controller gains, the tracking error is not eliminated. These characteristics are preserved in

the presence of the extra friction term.

5.2.2. PID Control
A PID controller was implemented using the control law
uU=u+uy,
with

u

1l

Kr+K [edt=K,(é+Ae)+K [eds
Up = “[Kpﬁ K ][‘qu::l

using the following parameters

K, =36
.20
38

K, =100

K,=|-8 10]
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and the reference signal
q, = 0.058in(27fr)
with frequency f=0.5Hz.

The performance of the tracking PID control is illustrated in figure 12(a) without
the extra friction term, and figure 12(b) with the extra friction term. The integral part of
the PID controller is supposed to eliminate the steady state error, but that only works for
constant desired trajectories. In this case, with a varying desired trajectory, the tracking is
even worse when the integral part is introduced (notice that the tracking error is bigger
than with the PD control). As in the case of the PD controller, the PID controller is not

able to compensate for the extra friction term.

5.2.3. NN+PD Control
The neural net tracking controller was implemented as described in section 5.1

using the same parameters of the simulation in section 4.4, except that in this case

F=2
G=20
x = 0.000001

This value of F' in the practical implementation was enough. A bigger value
produced a response very oscillatory.
The reference signal was
q, = 0.058in(2nft)

with frequency f=0.5Hz.
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Fig. 12. Performance of the PID control. (a) Without additional friction. (b) With
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The performance of the neural network tracking control is illustrated in figure 13
before the learning is complete and in figure 14 after the learning is complete. The training
of the neural network take less than one minute, after which the tracking error is reduced
to almost zero. The learning is really active all the time (on-line training), but we refer to
learning complete to the instant when the neural network have learned the model of the
link under the actual conditions. Notice in figure 14(a), without the extra friction term,
and figure 14(b), with the extra friction term, that the same controller learns the model of
the link readapting to changes in it (changes in the model like changes in friction
characteristics). Without changing the parameters of the controller, the neural network
controller is able to take the tracking error to almost zero in both cases.
In practice it was noticed that a change in the reference signal increased the tracking
error momentarily requiring a readaptation of the neural network. However after some
time, when the neural network learned the new conditions, it was able to get rid of the

tracking error.

S.3. Comparison between different approaches

Comparing the tracking performance of the different controllers shown in figure 11
for the PD controller, figure 12 for the PID controller, and figure 13 and figure 14 for the
neural net controller, it is clear the superiority of the last one. Even the PID cannot be a
better tracking controller than the neural network controller under a varying desired
trajectory. In this situation the PD controller is better than the PID, but not as good as the

neural network controller.
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Fig. 14. Performance of the PD+NN control after learning. (a) Without additional
friction. (b) With additional friction.
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CHAPTER 6
CONCLUSIONS

The practical implementation of a multiloop nonlinear neural network tracking
controller for a single flexible link has been tested and its performance compared to the
one of the standard PD and PID controllers. An extra friction term was added in the
implementation to show the ability of the neural network controller to learn and
compensate for the nonlinearities.

The controller includes an outer PD tracking loop, a singular perturbation inner
loop for stabilization of the fast dynamics, and a neural network inner loop used to
feedback linearize the slow dynamics. This NN controller requires no off-line learning
phase, the NN weights are easily initialized, and guarantees boundedness of the tracking
error and control signal.

The practical results corroborate the simulations showing that standard PD or PID
controllers are not able to track a varying desired trajectory, while the neural network
controller takes the tracking error to almost zero readapting to any changes in the model

of the link (extra friction terms).
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APPENDIX A

C CODE OF THE FUNCTIONS MORE RELEVANT IN THE

INPLEMENTATION OF THE NN CONTROLLER
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NNPIDFlexLink.h

Andy Lowe, 2/22/95
Copyright 1993 Andy Lowe, University of Texas at Arlington

Modified for Neural Net & PID Control by Luis Gutierrez, 4/9/96

#ifndef CTRL
fdefine CTRL

#include "FnSched.h"
#include "MIO16.h"
#include "nuControl.h"™

#define N_FUNCS 5

struet sFuncs | /* function ID numbers */
Intl6 Sample; /= sample y and (optionally) tach */
Intlé CErl; /* control . algorithm */
Intl6é Monitor; /* signal monitor */
Intlé Cmd; /* command processor */
Intl6é Watchdog; /* watchdog timer */

}i

typedef struct sFuncs sFuncs:;

#define N_BUFS 6

struct sBufs { /* buffer ID numbers */
Intl6é CmdQ; /% command queue */
Intl6é InputQ; /* signal input queue */
Intl6é MonitorQ; /% signal monitor output queue */
Intl6é Wave; e periodic waveform buffer */
Intlé Config; /[* configuration buffer */
Intl6é Parms; /* parameter buffer */

}:
typedef struct sBufs sBufs;

#define CMD_ HDR \
Int32 Size; /* number of bytes which follow */ N
Intis Cnd; /* command opcode */
struct sCmdQ { /* command queue element header */
CMD_HDR
bz
typedef struct sCmdQ sCmdQ;
#define CMDQSIZE 2048 /* size of command queue in bytes */
typedef Flt sInputQ:; i input signal queue element */
struct sMonitorQ { /* signal monitor output queue elements */
Flt 3 /* reference input */
Flt vi /* position measurement */
Bt u; /* control signal */
Flt Vi /* derivative of measurement or tach */
Blt afil; /* deflection estimate 1 (in) */
Elt wqt2; /% deflection estimate 2 (in) */
Plt dgfils; /% deflection rate 1 (in/s) */
ELE dgf2; /* deflection rate 2 (in/s) */
Flt vsl; /* strain gauge 1 voltage */
Flt vs2; /* strain gauge 2 voltage */
}i
typedef struct sMonitorQ sMonitorQ;
typedef Flt sWave; /* waveform table element */
struct sConfig { /* hardware configuration parameters */
sMIOConfig MIOConfig; /* MIO-16(X) configuration structure */
Intlé strainlChan; /* A/D channel number for strain 1 measurement */

Intl6 strainlGain; /* instrumentation amp gain for strain 1 */



Eit Vircw; /* viscous friction magnitude in CCW direction (V*s)
(V/RPM) */

Intl6é EnIntegral; /* Enable integral term */

/******************* Parameters for Neural Net ********’k**************/

Pit Kappa: /* neural net e-mod rate */

Flt F; /* neural net learning rate for W */

Flt G; /* neural net learning rate for V */

Intl6 addNeural; /* addNeural button */

/*************'}"}f**‘k'k**‘k********************************************‘k****/

}:
typedef struct sCtrlParms sCtrlParms;

struct sSiglimits { /* signal limits */
LVBool rLimit; /* true-->limit reference signal */
Fit rMax; /* maximum reference signal */
Flt rMin; /* minimum reference signal */
LVBool ulLimit; /* true-->limit control signal */
Flt uMax; /* maximum control signal */
Flt uMin; /* minimum control signal */
}:
typedef struct sSigLimits sSigLimits;
struct sRatelimit { /* limit rate of change of reference signal */
LVBool ratelLimit; /* true-->limit reference signal rate */
et rateMax; /* maximum rate magnitude {units / sec) */

}:
typedef struct sRatelLimit sRateLimit;

struct sFolError { /* following error */
LVBool eLimit; /* true-->limit following error */
Elt eMax; /* maximum following error magnitude */

12

typedef struct stolBrror sEolBErroxr;

struct sWaveParms { /* periodic waveform parameters */
Fit Freq; /* frequency (Hz) */
Flt Amp; /* amplitude */
Flt Offset; /* offset %/

};

typedef struct sWaveParms sWaveParms;

struct sSigMonitor { /% signal monitor */
IntE32 « iy /* iteration */
sMonitorQ Sig: /% signals */

¥
typedef struct sSigMonitor sSigMonitor;

struct sParms { /* parameter buffer structure */

sMode Mode;
sCtrlStatus CtrlStatus;
sCmdResult CmdResult;
sFuncPrd FuncPrd;
sCtrlParms CtrlParms;
sSigLimits SigLimits;
sRateLimit RateLimit;
sFolError FolError;
sWaveParms WaveParms;
sSigMonitor BigMonitor;

12

typedef struct sParms sParms;

ffdefine MODE 0

#define CTRLSTATUS sizeof (sMode)

#define CMDRESULT (CTRLSTATUS + sizeof(sCtrlStatus)]
#define FUNCPRD (CMDRESULT + sizeof(sCmdResult))
#define CTRLPARMS (FUNCPRD + sizeof(sFuncPkPrd))
#define SIGLIMITS {CTRLPARMS + sizeof(sCtrlParms))
#define RATELIMIT (SIGLIMITS + sizeof(sSigLimits)

)
#define FOLERROR (RATELIMIT + sizeof({sRateLimit))

or
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#define WAVEPARMS (FOLERROR + sizeof(sFolError))
#fdefine SIGMONITOR (WAVEPARMS + sizeof (sWaveParms))
(o command opcodes */
#define NO_OP 0x0000 /* no operation */
#define WR_MODE 0x0101 /* write mode */
#define WR_FUNCPRD 0x0102 /* write function periods */

#define WR_CTRLPARMS 0x0103 /* write control parameters */
#define WR_SIGLIMITS 0x0104 /* write signal limits */

#define WR_RATELIMIT O0x0105 /* write rate limit */

#define WR_FOLERROK 0x0106 /* write following error limit */
#define WR _WAVEPARMS 0x0107 /* write waveform parameters */

struct sCmds {

CMD_HDR

union {
sMode Mode;
sFuncPrd FuncPrd;
sCtrlParms CtrlParms;
sSigLimits SigLimits;
sRateLimit RatelLimit;
s¥olError FolError;
sWaveParms WaveParms:;

1 Data;

}:
typedef struct sCmds sCmds;

/********************* Neural Net constant definitlons ************‘k***********/

#define N1 5 /* # of NN Inputs */
#define N2 10 /* # of Hidden Layer Outputs */
#define N3 1 /* # of Output */

#define NN_INPUT_ e
#define NN_INPUT_ed
#define NN_INPUT r
4define NN_INPUT vrk
#define NN_INPUT ark

=W N RO

#define satFlt(x) x 7= MODIFY THIS TO SATURATE WEIGHTS IN NN */

#if ! option(a4_globals)
#define DSNewPtr malloc
#define DSDisposePtr free
fendif

/***s\'******************‘k**************************‘k**************************‘k*/

7 prototypes */
/* NNFlexLink.new.c */

LVBool InstallCtrl(Int32 inputQSize, Int32 monitorQSize, Int32 waveSize):
Void RemoveCtrl (Void):

LVBool ActivateCtrl (Void);

Void DeactivateCtrl (Void);

Void GetBufIDs(sBufs *bufs);

Void GetCtrlState(LVBool *isInstalled, LVBool *isActive);
Void EStop({Void):

Void Sample(TMFuncList *f1l);

Void Ctrl (TMFunclist *fl);

Void Monitor (TMFuncList *fl);

Void Cmd(TMFuncList *fl);

Void Watchdog{TMFuncList *f1);

P R e R NeUral Net prototypes ***********‘k*******‘k‘k‘k*‘k*/
/* NeuralNet.c */

Intl6 AllocateNN(Void):;
Void DisposeNN{Void);
Flt NeuralNetCtrl(Flt x[] , Flt fltre , Flt samplePrd, const sCtrlParms *ctrlParms):

/+****++*******************************************************************‘k***/

fendif
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NNPIDFlexLink.c
Flexible link controller.
Andv Lowe, 2/22/95

Copyright 1993 Andy Lowe, University of Texas at Arlington

Modified for Neural Net & PID Control by Luis Gutierrez, 4/9/96

/* Include Files */
#include "NNPIDFlexLink.h™

pascal void Debugger (void)

= OxA9FF;
pascal void DebugStr(const char *)
= OxABFF;
/% initialize parameters */
static sFuncs Funcs = {
-1, [* Sample */
e /% CEtrl *4
-1, /* Monitor */
=34 1* Cmd */
=1y /% Watchdog */

}:

static sBufs Bufs = |

-1, /* CmdQ */

-1, /* InputQ */
-1, /* MonitorQ */
-1, /* Wave */

=1 /* Config */
-1, /* Parms */

}:

static sConfig Config = {

{ /* MIOConfig */
0xd, /% slot */
(0% /* mioleéx */
miol6x18, /* miol6xClock */
0; /* uniADC */
200, /* rangeADC */
0y /* uniDAC */
10.0, /* refDAC */
}e
0, /* strainlChan */
2, /* strainlGain */
0.0, /* strainlZero */
1, /* strain2Chan */
2, /¥ strain2Gain */
0.0, /* strain2Zeroc */
0; /* extTach */
2, /* tachChan */
2; /* tachGain */
0.0, /* tachZero */
0; /* uChan */
0.0, /* uZero */
Oxc, /* nuConSlot */
1, /% yBxis */
21333 33333, /* yCntsPerUnit */
0-0; /* yOffset */
0.991,; /* Ktach (V*S/REV) */

}:

static sMode Mode = modeOff;



static sCtrlStatus CtrlStatus =

static sCmdResult CmdResult = {

NO_OP,
Or
}i

static sFuncPrd FuncPrd
DEFAULT SAMPLEPRD,

/*

Cmd */

0x0;

/* Result */

DEFAULT CTRLPRD,
DEFAULT MONITORPRD,

DEFAULT CMDPRD,

{

DEFAULT WATCHDOGPRD,

}i

/¥ sample period in seconds */
static Flt Ts = DEFAULT _SAMPLEPRD / (F1lt) 1000000.0;
/* control period in seconds */

static Flt Tc =

(DEFAULT _SAMPLEPRD * DEFAULT_CTRLPRD) / (Flt) 1000000.0;

static sCtrlParms CtrlParms = {
200.0, /* Kp */
36.0, /¥ Kd */
B:0; /* Kfl */
10.0, /* Kz */
8.0, /* Kfld */
0.0, /* Kfad */
-2.699, /* qfparml */
0.0012, /* qgfparm2 */
-5.0085, /* gfparm3 */
~0.5106, /* gfparmd */
0.8189, /* qfparmb5 */
0.68564, /* slref */
-1.3325%9, /* s2ref */
D. 0, /* Ki */
0.0, /% Krd */
70.0, /* Wd x/
10.0, /* StrainWwd */
500..0, /* VrefWd */
500.0, /* ArefWd */
0, /* Disflx */
2.0, /* Stfrccw */
-2.0, /* Stfrcw */
05 /% Enfric %/
1 04 /* Vfrccw */
1..0; /* Vfrcw */
0, /* EnIntegral */
/**‘k**‘k*‘k***‘k‘k*‘k**** Parameters for Neural Net ***********************/
0.000001, /* Kappa */
2.0 xS ek
20.0, /* G */
0, /* addNeural button */

/**********9(***‘k****************************-k***************************/

}:

static

}:

static

sSigLlimits SigLimits = {

0, /* rLimit */
-0, /* rMax */
<0, /* eMin */

, /% ulimit */
Oy /* uMax */
20, /* uMin */

OO0 00O

sRatelLimit Ratelimit = {

05 /* ratelimit */

6.0, /* rateMax */
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k:

static sFolError FolError = {
-1, /* eLimit */
0.5, /* eMax */
}:

static sWaveParms WaveParms = {
0.0, /* Ereg */
0.0, /* Amp */
4.6, /* Offset */

}z

static sSigMonitor SigMonitor = { 1%
=i /* i %/
{ /* Sig.x */
/> Sig.y */
/% Sigiu %/
/% Sig.w */
J* Sig.qfl */
/* Sig.qf2 */
/* Sig.dqfl */
/* sig.dqf2 */
7% Sig.vsl */
/* Sig.vs2 */

signal monitor */

~

~ N =

DOCWOoOOCOO OO

.

DO 000000

NN N N N .

}e
};

static Intlé CtrlInstalled = 0O; /* true-->controller is installed */

static Intl6é CtrlActive = 0; /* true-->controller is active */

static Int32 WaveSize; /* size of waveform table in samples */

static Flt WavePhase; /* phase of output waveform */

static Int32 SyncSample; /* synchronization counter for Sample function */
static Int32 SyncCtrl; /* synchronization counter for Ctrl function */
static Int32 SyncMonitor; /* synchronization counter for Monitor function */
static Intl6é Sampled; /* false-->first iteration of Sample function */
static Intl6 WatchdogTimeout; /* true-->watchdog timeout */

static Flt y;
static Flt v;

/* measured position at time (ks*Ts) */
/* derivative of y or tach measurement at time (ks*Ts) */

static Flt /* reference signal at time (kc*Tc) */

static Flt rV: /* rate limited reference signal at time (kc*Tc) */
static Flt rkp2: /* rlkec+2) %/

static Flt rkpl; /* r{kc+l) */

static Fit rk; % rike) */

static Flt rkml; /* rikc~1) */

static Flt rkm2; /* rikc-2) */

static Flt vrkpl; /* reference velocity divided difference at time
{kc+1)*Tc -> vrikc+l) */

static Flt wrk; /% reference velocity divided difference at time
{kc)*Tec ~> vrike) */

static Flt wrkml; /* reference velocity divided difference at time
{kc=1)*Tc -> vr(kc-1) */

static Flt ark; /* reference acceleration divided difference at
time (kc)*Tc -> r{kc) */

static Flt u; /* control signal at time (kc*Tc) */

static Fit als; /* limited control signal at time (kc*Tc) */
static Flt vsl:; Ml strain gauge 1 voltage */

static Flt vs2; /* strain gauge 2 voltage */

static Flt gfi; /* deflection 1 at time (ks*Ts) */

static Flt gf2; /* deflection 2 at time ({ks*Ts) */

static Flt daqfl; /* derivative of deflection 1 at time (ks*Ts) */
static Flt dgf2; f%* derivative of deflection 2 at time {(ks*Ts) */
static Flt e; /* position error */

static F1t ekml; /* elkec-1) */

static Flt ed: /* velocity error */

static Flt eint: /* integral of position error */

static Fit fltre; /* filtered error */

static Flt absfltre = 0; /* Absolute value of filtered error */
static Flt fabsfltre = 0; /* Filtered absolute value of filtered error */
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statie Elt x{N1]: /* Input vector for Neural Net */

InstallCtrl

Create the function list and allocate the parameter and signal buffers. The
controller functions are not activated. No action is taken if the controller is
already installed. Returns 0 if installation is successful, -1 otherwise.

— Prototype:
LVBool InstallCtrl(Int32 inputQSize, Int32 monitorQSize, Int32 waveSize):

LVBool InstallCtrl(Int32 inputQSize, Int32 monitorQSize, Int32 waveSize)
{

InEl6 i;

Int32 n;

sWave wavelnit;

if (CtrlInstalled) /* don't do anything if we are already installed */
return 0;

1% create function list */
e CreateTimerFuncList(N_FUNCS);

/% allocate buffers */
CreateBufferList(N_BUFS):

Bufs.CmdQ = AllocateBuffer (CMDQSIZE);

Bufs.InputQ = AllocateBuffer(inputQSize * sizeof(sInputQ)):
Bufs.MonitorQ = AllocateBuffer(monitorQSize * sizeof(sMonitorQ)):;
Bufs.Wave = AllocateBuffer{waveSize * sizeof(sWave));

Bufs.Config = AllocateBuffer(sizeof(sConfig)):

Bufs.Parms = AllocateBuffer(sizeof(sParms));

[x¥xFkkkxkxkkk% Allocate Vectors and Matrices for Neural Net *¥¥¥xxkkkkxxx/

0 if(AllocateNN{)) {
RemoveCtrl():
return =1;

}

/******‘k************************k*************************‘k*************/

WaveSize = (waveSize > () ? waveSize : 0;

/* initialize configuration buffer and parameter buffer */
IE

WriteFixedBuf (Bufs.Config, 0, sizeof(sConfig), &Config) < (Int32)
sizeof (sConfig)

|1 WriteFixedBuf({Bufs.Parms, MODE, sizeof{sMode), &Mode) < (Int32)

~ sizeof (sMode)

|| WriteFixedBuf (Bufs.Parms, CTRLSTATUS, sizeof(sCtrlStatus), &CtrlStatus)
< {Int32) sizeof{sCtriStatus]

| WriteFixedBuf (Bufs.Parms, CMDRESULT, sizeof(sCmdResult), &CmdResult) <
(Int32) sizeof(sCmdResult)

|| WriteFixedBuf (Bufs.Parms, FUNCPRD, sizeof(sFuncPrd), &FuncPrd)} < {(Int32)
sizeof (sFuncPrd)

|1 WriteFixedBuf {Bufs.Parms, CTRLPARMS, sizeof({sCtrlParms), &CtrlParms) <
(Int32) sizeof(sCtrlParms)

S || WriteFixedBuf(Bufs.Parms, SIGLIMITS, sizeof(sSigLimits), &SigLimits) <

{(Int32) sizeof({sSigLimits)

|| WriteFixedBuf (Bufs.Parms, RATELIMIT, sizeof(sRateLimit), &RatelLimit) <
{(Int32) sizeof(sRatelimit)

|| WriteFixedBuf (Bufs.Parms, FOLERROR, sizeof({sFolError), &FolError) <
{Int32) sizeof(sFolError)



|| WriteFixedBuf (Bufs.Parms, WAVEPARMS,

(Int32) sizeof(sWaveParms)

|| WriteFixedBuf(Bufs.Parms, SIGMONITOR,

< {Int32) sizeof(sSigMonitor)
)
{
RemoveCtrli);
return =i

1
i

/% zero waveform buffer */
wavelnit = 0.0;
for {n = 0; n < WaveSize; n++)
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sizeof (sWaveParms), &WaveParms) <

sizeof (sSigMonitor), &SigMonitor)

WriteFixedBuf (Bufs.Wave, n * sizeof(sWave), sizeof{sWave), &wavelnit);

CtrlInstalled = 1;
return 0;

RemoveCtrl
Uninstall the controller.

Prototype:
Void RemoveCtrl {Void):

o
Void RemoveCtrl (Void)
{

DeactivateCtrl();

DisposeTimerFuncList():

Bufs.CmdQ = Bufs.InputQ = Bufs.MonitorQ = Bufs.Wave

= Bufs.Config = Bufs.Parms = -1;
DisposeBufferList{);

/*************‘k*** Free memory used by Neural Net **********************/

DisposeNN({);

/*****************************‘k*************************************‘k***/

CtrlInstalled = 0;

return;

ActivateCtrl

Initiate the periodic execution of the controller functions. No action is taken

if the controller is not installed or it is already active. The device
configuration parameters are read from the Config buffer and used to initialize the
I/0 hardware. Returns 0 if the controller is successfully activated, -1 otherwise.

Prototype:
LVBool ActivateCtrl(Void);

Hofe

LVBool ActivateCtri {Void)
!

1

TMFuncList f1Init;

if (CtrlInstalled && !CtrlActive) {

ReadFixedBuf (Bufs.Config, 0, sizecf(sC

if (InitMIOl16{&Config.MIOConfig) <

i{ ZeroNuConAxisPos(Config.nuConSlot, Config.yAxis)

return —1;

onfig
&k

Ve &Config):
tNuControl {Config.nuConSlot
< 0

A
Q)

)
ni

)



Funcs.Watchdog = InstallTimerFunc(&flInit); /¥ install Watchdog

function */

SyncSample = SyncCtrl = SyncMo
Sampled = WatchdogTimeout = 0;

Yy =v=1r = rV =rkp2 = rkpl = rk =rkml = rkm2 = u = uL. = gfl = qf2 =

I

dgf2 = 0.0;

nitor = 0;

vsl = vs2 = vrkpl = vrk = vrkml = ark = ekml = eint = 0.0;

CtrlActive = 1;

if (Funcs.Sample == -1 || Func

s.Ctrl == -1 || Funcs.Monitor == -1

|| Funcs.Cmd == -1 || Funcs.Watchdog == -1) {

DeactivateCtrl():;
return ~1;
}
ActivateTimerFuncs (N_FUNCS, (I
}

if (CtrlActive)
return O;
else
return -1;

DeactivateCtrl

Inhibit the periodic execution of the control
before the controller is deactivated. No act
not active.

Prototype:
Void DeactivateCtrl (Void):

Rt

Void DeactivateCtrl (Void)

{

if (CtrlActive) {

EStop!):
DeactivateTimerFuncs (N_FUNCS,
RemoveTimerFunc (Funcs.Watchdog
RemoveTimerFunc(Funcs.Cmd) ;
RemoveTimerFunc{Funcs.Monitor}
RemoveTimerFunc(Funcs.Ctrl):;
RemoveTimerFunc{Funcs. Sample);
Funcs.Sample = Funcs.Ctrl = Fu

=
~

CtrlActive = 0;

1

/*

EStop

Perform an emergency stop. The controller is
immediately set to zero.

Prototype:
Void EStop(Void):

=
Void EStop(Void)
{
Uintlé sReg;

sReg = BlockInterrupts(); /s

ntlé *) &Funcs):

ler functions. A stop command is issued

ion is performed if the controller is

(Intl6 *) &Funcs);
):

7

ncs.Monitor = Funcs.Cmd = Funcs.Watchdog

make sure we aren't interrupted */
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fl->period = FuncPrd.Sample;

AT
ReadNuConAxisPos(Config.nuConSlot, Config.yAxis, &posCnt);
y = ScaleNuConAxisPos(posCnt, Config.yCntsPerUnit, Config.yOffset);

S5etMIO16ADChannel (&Config.MIOConfig, Config.strainlChan, Config.strainlGain);

vsl = - Config.strainlZero
+ ScaleMIOl6ADC({&Config.MIOConfig, ReadMIOl6ADC(&Config.MIOConfig),

Config.strainlGain);

SetMIOl6ADChannel (&Config.MIOConfig, Config.strain2Chan, Config.strain2Gain);

vs2 = - Config.strain2Zero
+ ScaleMIO16ADC{&Config.MIOConfig, ReadMIOl16ADC(&Config.MIOConfig),

Config.strain2Gain);

/*
$3TIT3339%9%%%9%9%%% Convert Strain volts to deflection magnitudes
274

gfll = gfl:;

qf2l = gf2;

qfl = CtrlParms.qgfparml * (vsl - CtrlParms.slref) / ((Flt) 1.0 + CtrlParms.gfparm2

* {vsl - CtrlParms.slref))
+ CtrlParms.gfparm3 * (vs2 - CtrlParms.s2ref) / ((F1t)1.0 +

CtrlParms.gfparm2 * (vs2 - CtrlParms.s2ref));
qf2 = CtrlParms.qgfparm4 * {vsl - CtrlParms.slref) / ((Flt) 1.0 + CtrlParms.gfparm2

* {vsl - CtrlParms.slref))
+ CtrlParms.qgfparmb * (vs2 - CtrlParms.s2ref) / ({(F1t) 1.0 +

CtrlParms.qfparm2 * (vs2 - CtrlParms.s2ref));

if (!Sampled) {

vl = y:
qfll = gfi;
qf21 = gfz;
Sampled = 1;

}

if (Config.extTach < 0) {
SetMIOl6ADChannel (&Config.MIOConfig, Config.tachChan, Config.tachGain);
v = Config.Ktach * (- Config.tachZero
+ ScaleMIOl6ADC(&Config.MIOConfig, ReadMIOL6ADC(&Config.MIOConfig),
Config.tachGain));
}
else {

if (CtrlParms.Wd) {
Flt a = (Flt) 1.0 / ((Flt) 1.0 + CtrlParms.Wd * Ts):

v a * v+ CexlParms . Wd * a * {y - yi):
else
v = 0.0;
}

if (CtrlParms.StrainWd) {
Flt a = (Flt) 1.0 / {(Flt) 1.0 + CtrlParms.StrainWd * Ts);

dgfl = a * dgfl + CtrlParms.StrainWd * a * (gfl - gfll);
dgf2 = a * dgf2 + CtrlParms.StrainWd * a * (gf2 - gf21);
}
else {
dgfl = 0.0;
dgfz = 0.0;
}
return;

Prototype:



Void Ctrl(TMFuncList *fl);

Void Ctrl(TMFuncList *f1)
{

60

Flt rL; s limited reference signal at time (kc+2)*Tc) */
Flt uNN = 0.0; 1* neural net control contribution */
Flt lamda; /* parameter for filtered error calculation */
Fit Friction; /* simulated friction term */
Flt Vo = 0.05; /* threshold velocity for friction model */
ik update period only when synchronized with Cmd function */
if (!SyncCtrl--)
— fl->period = FuncPrd.Sample * FuncPrd.Ctrl;
switch (Mode) {
case modeOff:
default:
u = ul = 0.0;
‘'r = rL = 0.0;
break;
case modeAuto:
case modePrdAuto:
if (Mode == modeBAuto) {
7> read reference signal from input queue */
if {ReadBuffer(Bufs.InputQ, sizeof(sInputQ), &r) < (Int32)
sizeof (sInputQ))
= SetBufEmpty{Bufs.InputQ);
}
else { /* read reference signal from waveform buffer */
if (WaveSize > 0) {
sWave wavel, waveZ2;
i Flt wavelndex;
Iat32 nil, n2;
if (WavePhase >= (Flt) 1.0)
WavePhase —-= (Flt) ((Int32) WavePhase);
nl = {Int32) {(wavelndex = WavePhase * (Flt)
WaveSize);
if {((n2 = nl + 1) == WaveSize)
n2 = 03
ReadFixedBuf (Bufs.Wave, nl * sizeof({sWave),
sizeof (sWave), &wavel):
ReadFixedBuf {Bufs.Wave, n2 * sizeof(sWave),
sizeof (sWave), &wave2);
r = WaveParms.Offset +
=5 WaveParms.Amp * {(wavel + (wavelIndex - (Flt)
nl) * {(wave2 - wavel)):
WavePhase += WaveParms.Freq * Tc;
}
}
7 limit the reference signal */
if {Siglimits.rlimit < 0)
rL = {(r < SiglLimits.rMin ? SigLimits.rMin : (r <
— Siglimits.rMax ? r : SigLimits.rMax));
else
rl =
/% limit the rate of change of the reference signal */
i if (Ratelimit.rateLimit < 0) {
Flt dr = Ratelimit.rateMax * Tc;
Vo= {lzh - oV € = dr} 2 itV = dr (8T — eV % dy) 2 ¥l 2

+ drj));

else

EiL3

rv
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Better age the old values of the limited reference signal

rkm2 = rkml; rkml = rk; rk = rkpl; rkpl = rkp2; rkp2 = rv;

vrkml = vrk; vrk = vrkpl;
i quantize the reference signal */
rL = rk;

QuantizeNuConAxisPos({&rL, Config.vCntsPerUnit, Config.yOffset);
e = rL - y;

/* MODIFIED to increase safety of operation:
the emergency stop is produced when gfl and/or qf2 are big enough too */

if {(FolError.elimit < 0) {

if ((e > (Flt) 0.0 && e > FelError.eMax) || (e < (Flt) 0.0
&& -e > FolError.eMax) || ((gfl*gfl + gf2*gf2) > 100*FolError.eMax*FolError.eMax)) {
EStop{(}: /& following error */
CtrlStatus |[= CS_FOLERROR;

. WriteFixedBuf (Bufs.Parms, CTRLSTATUS,
sizeof (sCtrlStatus), &CtrlStatus):;

e

/% e e e e o S o e oh i e DI
Insert here the computation of reference velocity and acceleration
___________________________________________________________________________ */
if (CtrlParms.VrefWd) {
Fit wal = (Elt) 1.0 / ({Fi£} 1.0 + (Flt) 2.0 *
CtrlParms.VrefWd * Tc);
vrkpl = al * vrkpl + al * CtrlParms.VrefWd * (rkp2 - rk);
}
else {
vrkpl = 0.0;
}
if (CtrlParms.ArefWd) ({
Flt al = (Fl1t)1.0 / ((F1t)1.0 + (Fl1t)2.0 * CtrlParms.ArefWd

* Be):

ark = al * ark + al * CtrlParms.ArefiWd * (vrkpl-vrkml);

}
else {
ark = 0.0;
}
ed = vrk - v /* edot */

u = CtrlParms.Kp * e + CtrlParms.Kd * ed; /* PD control */

eint += Tc * (e + ekml) / 2; /* update integral */
ekml = e;

if {(eint < -FolError.eMax)

eint = -FolError.eMax;
if {eint > FolError.eMax)
eint = FolError.eMax; /* limit integral */

if (CtrlParms.EnIntegral < 0)
u 4= CtrilParms.Ki * eint; /* include integral control */

if (CtrlParms.Disflx >= 0) {
1 4= CtrlParms.Kfl * gfl + CtriParms.KE2 * gf2 +
CtrlParms.Kfld * dqgfl + CtrlParms.Kf2d * dqf2;



}

/-k-k&*****************‘k‘k* Apply the neural net term i’*************'&*‘k******/

if (CtrlParms.addNeural < 0) {
Flt a = (Flt) 2.0 / (CtrlParms.StrainWd * Ts);

% [NN_INPUT e] = e; /* evaluate input vector */
¥ [NN_INPUT_ed] = ed;
x[NN_INPUT r] = r;

z[NN_INPUT vrk] vrk;
% [NN_INPUT ark] = ark;
if (CtrlParms.Kd t= 0)
lamda = CtrlParms.Kp / CtrlParms.Kd;
if (CtrlParms.Kd == || lamda > 100.0)
lamda = 100.0;
fltre = ed + lamda * e; /* calculate filtered error */

uNN .= NeuralNetCtrl{(x , fltre , Ts , &CtrlParms):;
u += ulNN;

1
i

/*******************************************************‘k*******************/

/*‘k********************* Simulate extra friction ‘k*************************/

if (CtrlParms.Enfric < 0) {
if (v*v <= Vo*Vo) {
if (u > (Elf) 0.0) {
Priction = 2 * CtrlParms.Vfrccw * Vo +
CtrlParms.Stfrcew;
u -= Friction;
E . (v < (ElE) 0.0)
u = 0.0;
}
1f tu < (Fit] 0.0) {

Priction = =2 * CtrlParms.Vircw * Vo +
CtriParms.Stfrow:
u -= Friction;
1 (o >0 LELE) 0000
u = 0.0;

}

}
if iy > Vo) {

Friction = CtrlParms.Vfrccw * v + CtrlParms.Stfrccw;
u == Friction;
}
if {v < Vol {

Friction = CtrlParms.Vfrcw * v + CtrlParms.Stfrcw;

u —= Friction;

}

/**********************k****************k************************************/

/*
~~~~~~~~~~~~~~~ Limit and Convert the Control Signal ~~~~~~~~m~smsssmncssncnnnno
*f
u += Config.uZero;
if {Biglhimits.uldmit < 0}
uL = {(u < SigLimits.uMin ? Siglimits.uMin : (u <
Siglimits.uMax ? u : SigLimits.uMax));
else
ul, = u;
u —-= Config.uZero;
ul, = - Config.uZero + LimitMIOl6DAC(&Config.MIOConfig, ul);

break;
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case modeManual:
case modePrdManual:
if (Mode == modeManual) {
yik read control signal from input queue */
if (ReadBuffer{Bufs.InputQ, sizeof(sInputQ), &u) < (Int32)

sizeof (sInputQ))

WaveSize);

sizeof (sWave),

sizeof (sWave),

nl) * (wave2 -

SigLimits.uMax

}

SetBufEmpty(Bufs.InputQ);
1
else { /* read control signal from waveform buffer */
if {WaveSize > 0) {
sWave wavel, waveZ2;
Flt wavelndex;
Int32 nl, n2;

if (WavePhase >= (Flt) 1.0)

WavePhase -= (Flt) ((Int32) WavePhase);
nl = (Int32) (waveIndex = WavePhase * (Flt)
if ((n2 = nl + 1) == WaveSize)

n2 = 0;

ReadFixedBuf (Bufs.Wave, nl * sizeof(sWave),
&wavel);

ReadFixedBuf (Bufs.Wave, n2 * sizeof(sWave),
&waveZ);

u = WaveParms.Offset +

WaveParms.Amp * (wavel + {(wavelndex - (Flt)

wavel));

WavePhase += WaveParms.Freqg * Tc;

}

u += Config.uZero;
if (SigLimits.uLimit < 0)

ul. = {u < Siglimits.uMin ? Siglimits.uMin : (u <
? u : SigLimits.uMax));
else
ul, = u;
u —-= Config.uZero;
ulL, = - Config.uZero + LimitMIO16DAC(&Config.MIOConfig, ul);

r =rL = 0.0;
break;

ul. += Config.uZero;
WriteMIOl6DAC(&Config.MIOConfig, Config.uChan, ScaleMIOl16DAC{&Config.MIOConfig,

&ul));

ul, -—= Config.uZero;

SigMonitor.Sig.r = rL;
SigMoniteor.Sig.v = ys
SigMonitor.Sig.u = ulL;
SigMonitor.Sig.v = v;
SigMonitor.Sig.gfl = gfl;
SigMonitor.Sig.qf2 = gf2;
SigMonitor.Sig.dqfl = dgfl:;
SigMonitor.Sig.dqf2 = dqf2;
- SigMonitor.Sig.vsl = vsl;
SigMonitor.Sig.vs2 = vs2;

return;

Monitor

Prototype:

Void Monitor{(TMFuncList *fl);

%/

Void Monitor(TMFuncList *fl)



/= update period only when synchronized with Cmd function */

if (!SyncMonitor--)
fl->period = FuncPrd.Sample * FuncPrd.Ctrl * FuncPrd.Monitor;
/% write signals to parameter buffer */

if (++SigMonitor.i < 0)
SigMonitor.i = 0;

WriteFixedBuf (Bufs.Parms, SIGMONITOR, sizeof(sSigMonitor), &SigMonitor);

o write signals to signal monitor buffer */
if (WriteBuffer(Bufs.MonitorQ, sizeof({sMonitorQ), &SigMonitor.Sig) < (Int32)
sizeof (sMonitorQ))
SetBufDatalLost (Bufs.MonitorQ):;

/* debug */
CmdResult.Result = sizeof(sCtrlParms);
WriteFixedBuf (Bufs.Parms, CMDRESULT, sizeof{sCmdResult), &CmdResult):;

return;
}
/ *
P ORI L PR NENT o IR S B A
Command result codes returned in CmdResult.Result: 0 «=> no error
-1 --> could not complete
Prototype:

Void Cmd(TMFuncList *fl);
*/ ———————————————————
Void Cmd(TMFuncList *fl)
{
Int32 nBytes:;
sCmds CmdBuf;

fl->period = FuncPrd.Sample * FuncPrd.Ctrl * FuncPrd.Monitor * FuncPrd.Cmd;
Ts = FuncPrd.Sample / (Flt) 1000000.0;

Tc = (FuncPrd.Sample * FuncPrd.Ctrl) / (Flt) 1000000.0;

SyncSample = FuncPrd.Ctrl * FuncPrd.Monitor * FuncPrd.Cmd - 1;

SyncCtrl = FuncPrd.Monitor * FuncPrd.Cmd - 1;

SyncMonitor = FuncPrd.Cmd - 1;

/% command processor */
if {(nBytes = CheckBuffer(Bufs.CmdQ, cbUsed)) < (Int32) sizeof(CmdBuf.Size)) {
if (nBytes > 0)
FlushBuffers(l, &Bufs.CmdQ); /* incomplete command packet */

return;
}
ReadBuffer (Bufs.CmdQ, sizeof(CmdBuf.Size), &CmdBuf.Size); [* read command
size */
nBytes -= sizeof(CmdBuf.Size);

if (CmdBuf.Size < O) |
FlushBuffers(l, &Bufs.CmdQ); /* garbled command packet, flush entire
buffer */
return;
}
if (CmdBuf.Size >= (Int32) sizeof(CmdBuf.Cmd)) {

ReadBuffer (Bufs.CmdQ, sizeof{CmdBuf.Cmd), &CmdBuf.Cmd): /* read
command opcode */
3 nBytes -= sizeof (CmdBuf.Cnd);
CmdBuf.Size -= sizeof (CmdBuf.Cnd);
}
else {
ReadBuffer(Bufs.CmdQ, CmdBuf.Size, 0); /% incomplete command
packet */

meturn;

1
I



WatchdogTimeout = 0;

CmdResult.Cmd = CmdBuf.Cmd;
CmdResult.Result = 0;
switch (CmdBuf.Cmd) {
case WR_MODE:
if (nBytes >=
sizeof {sMode)) {

/* clear timeout flag */

(Int32) sizeof(sMode) && CmdBuf.Size >= (Int32)

ReadBuffer (Bufs.CmdQ, sizeof{sMode), &CmdBuf.Data);
CrndBuf.Size -= sizeof (sMode);

switch

sizeof (sCtrlStatus), &CtrlStatus);

sizeof(sMode), &Mode);

sizeof(sCtrlStatus), &CtrlStatus);

rkm2 =y

~

sizeof (sMode), &Mode);

sizeof(sCtrlStatus), &CtrlStatus);

sizeof (sWaveParms), &WaveParms);

rkmz = y;

integrator for bumpless transfer */

sizeof (sMode), &Mode);

sizeof (sCtrlStatus), &CtrlStatus);

siZeof (sMode), &Mode);

sizeof{sCtrlStatus), &CtrlStatus);

(CmdBuf.Data.Mode) {

case modeQff:
CtrlStatus = 0x0;
WriteFixedBuf(Bufs.Parms, CTRLSTATUS,

if (Mode != modeOff) {
Mode = modeOff;
WriteFixedBuf(Bufs.Parms, MODE,

}
break:
case modeAuto:
CtrlStatus = 0x0;
WriteFixedBuf (Bufs.Parms, CTRLSTATUS,

if (Mode != modeAuto) {
FlushBuffers{l, &Bufs.InputQ);
r = rV = rkp2 = rkpl = rk = rkml

vrk = vrkpl = vrkml = ark = 0.0;
Mode = modeAuto:
WriteFixedBuf (Bufs.Parms, MODE,

}
break;
case modePrdAuto:
CtrlStatus = 0x0;
WriteFixedBuf (Bufs.Parms, CTRLSTATUS,

if (Mode != modePrdAuto) {
WavePhase = 0.0;
WaveParms.Amp = 0.0;
WaveParms.Offset = y;

65

WriteFixedBuf (Bufs.Parms, WAVEPARMS,

r = rV = rkp2 = rkpl = rk = rkml

vrk = vrkpl = vrkml = ark = 0.0;
h ui = ulL; initialize

Mode = modePrdAuto;
WriteFixedBuf (Bufs.Parms, MODE,

}
break;
case modeManual:
CtrlStatus = 0x0;
WriteFixedBuf{Bufs.Parms, CTRLSTATUS,

if (Mode != modeManual) {
FlushBuffers{l, &Bufs.InputQ):
Mode = modeManual;
WriteFixedBuf (Bufs.Parms, MODE,

}
break:;
case modePrdManual:
CtrlStatus = 0x0;
WriteFixedBuf {Bufs.Parms, CTRLSTATUS,

if (Mode !'= modePrdManual) {
WavePhase = 0.0;
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WaveParms.Amp = 0.0;

WaveParms.Offset = ul;

WriteFixedBuf (Bufs.Parms, WAVEPARMS,
sizeof (sWaveParms), &WaveParms);

Mode = modePrdManual;

WriteFixedBuf (Bufs.Parms, MODE,
sizeof{sMode), &Mode);

}

break;
default:
CmdResult.Result = -1; /* unrecognized
mode */
break;
}
}
else
CmdResult.Result = -1; /* incomplete command packet */
break;
case WR_FUNCPRD:
if (nBytes >= (Int32) sizeof(sFuncPrd) && CmdBuf.Size >= (Int32)
sizeof {sFuncPrd)) { g

ReadBuffer{Bufs.CmdQ, sizeof(sFuncPrd), &CmdBuf.Data);
CmdBuf.Size -= sizeof(sFuncPrd):
if (CmdBuf.Data.FuncPrd.Sample >= MIN PERIOD &&
CmdBuf.Data.FuncPrd.Ctrl > 0 i
&& CmdBuf.Data.FuncPrd.Monitor > 0 &&
CmdBuf.Data.FuncPrd.Cmd > 0
&& CmdBuf.Data.FuncPrd.Watchdog >= MIN_ PERICD)

FuncPrd.Sample = (Int32) (CmdBuf.Data.FuncPrd.Sample
/ 20) * 20;

FuncPrd.Ctrl = CmdBuf.Data.FuncPrd.Ctrl;

FuncPrd.Monitor = CmdBuf.Data.FuncPrd.Monitor;

FuncPrd.Cmd = CmdBuf.Data.FuncPrd.Cmd;

FuncPrd.Watchdog = (Int32)
(CmdBuf.Data.FuncPrd.Watchdog / 20) * 20;

WriteFixedBuf (Bufs.Parms, FUNCPRD, sizeof (sFuncPrd),
&FuncPrd) ;

else
CmdResult.Result = -1; /* bad function periods
w17
}
else
CmdResult.Result = ~1; /* incomplete command packet */
break;
case WR_CTRLPARMS:
if (nBytes >= (Int32) sizeof{sCtrlParms) && CmdBuf.Size >= (Int32)
sizeof (sCtrlParms)) {

ReadBuffer (Bufs.CmdQ, sizeof(sCtrlParms), &CmdBuf.Data);
CrndBuf.Size —-= sizeof(sCtrlParms);
CtrlParms = CmdBuf.Data.CtrlParms;
WriteFixedBuf (Bufs.Parms, CTRLPARMS, sizeof(sCtrlParms),
&CtrlParms);
}
else
CmdResult.Result = -1; /* incomplete command packet */
break;
case WR_SIGLIMITS:
if (nBytes >= (Int32) sizeof(sSigLimits) && CmdBuf.Size >= (Int32)
sizeof(sSigLimits)) {
ReadBuffer (Bufs.CmdQ, sizeof(sSigLimits), &CmdBuf.Data);
CmdBuf.Size -= sizeof(sSiglLimits);
if ((CmdBuf.Data.SigLimits.rLimit >= 0 ||
CmdBuf.Data.SigLimits.rMin <= CmdBuf.Data.SigLimits.rMax)
&& (CmdBuf.Data.SigLimits.uLimit >= 0 ||
CmdBuf.Data.SigLimits.uMin <= Config.uZero
&& CmdBuf.Data.SigLimits.uMax >=
Config.uZero))

SigLimits = CmdBuf.Data.SigLimits;
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e WriteFixedBuf{Bufs.Parms, SIGLIMITS,
sizeof(sSigLimits), &SigLimits);
}
else
CmdResult.Result = -1; /* bad limits */
i }
else
CmdResult.Result = -1; /* incomplete command packet */
break;
case WR_RATELIMIT:
if (nBytes >= (Int32) sizeof(sRatelLimit) && CmdBuf.Size >= (Int32)
sizeof (sRateLimit)) {
ReadBuffer (Bufs.CmdQ, sizeof(sRateLimit), &CmdBuf.Data);
CmdBuf.Size -= sizeof(sRateLimit);
if (CmdBuf.Data.RateLimit.ratelLimit >= 0 |
CmdBuf.Data.RatelLimit.rateMax >= (Flt) 0.0) {
RateLimit = CmdBuf.Data.RateLimit;
WriteFixedBuf (Bufs.Parms, RATELIMIT,
sizeof(sRatelLimit), &RateLimit);
- }
else
CmdResult.Result = -1; /* bad limit */
}
else
= CmdResult.Result = -1; /* incomplete command packet */
break;
case WR_FOLERROR:
if (nBytes >= (Int32) sizeof(sFolError) && CmdBuf.Size >= (Int32)
sizeof{sFolError)) {
ReadBuffer (Bufs.CmdQ, sizeof(sFolError), &CmdBuf.Data);
CmdBuf.Size -= sizeof(sFolError);
if (CmdBuf.Data.FolError.eLimit >= 0 ||
CmdBuf.Data.FolError.eMax >= (Flt) 0.0) {
— FolError = CmdBuf.Data.FolError;
WriteFixedBuf (Bufs.Parms, FOLERROR,
sizeof(sFolError), &FolError);
}
else
S5 CmdResult.Result = -1; /* bad following error */
}
else
CmdResult.Result = -1; /* incomplete command packet */
break;
case WR_WAVEPARMS:
if (nBytes >= (Int32) sizeof{sWaveParms) && CrndBuf.Size >= (Int32)
sizeof (sWaveParms)) {
ReadBuffer (Bufs.CmdQ, sizeof(sWaveParms), &CmdBuf.Data);
— CmdBuf.Size -= sizeof(sWaveParms);
if (CmdBuf.Data.WaveParms.Freqg >= (Flt) 0.0) {
WaveParms = CmdBuf.Data.WaveParms;
WriteFixedBuf{Bufs.Parms, WAVEPARMS,
sizeof (sWaveParms), &WaveParms);

in| }

else
CmdResult.Result = -1; /* bad wave parameters */
}
e else
CmdResult.Result = -1; /* incomplete command packet */
break;
case NO OP:
break;
o default:
CmdResult.Result = -1; /* unrecognized command */
break;

1

&
if (CrndBuf.Size > 0)
=) ReadBuffer (Bufs.CmdQ, CmdBuf.Size, 0); /* discard unused bytes
in command packet */
WriteFixedBuf (Bufs.Parms, CMDRESULT, sizeof(sCmdResult), &CmdResult);

return;

——



Watchdog

Prototype:
Void Watchdog(TMFuncList *f1l);

*/

Void Watchdog(TMFuncList *fl)

I
1

fl->period = FuncPrd.Watchdog;

if (WatchdogTimeout) {

}

EStop(});
CtrlStatus |= CS TIMEOUT;

FuncPrd.Sample = DEFAULT SAMPLEPRD;

FuncPrd.Ctrl = DEFAULT CTRLPRD;
FuncPrd.Monitor = DEFAULT MONITORPRD;
FuncPrd.Cmd = DEFAULT CMDPRD;
FuncPrd.Watchdog = DEFAULT WATCHDOGPRD;

Ts = DEFAULT SAMPLEPRD /

(F1t) 1000000.0;

Te = (DEFAULE_SAMPLEPRD * DEFAULT_CTRLPRD) / (F1lt) 1000000.0;

WriteFixedBuf (Bufs.Parms,
WriteFixedBuf (Bufs.Parms,

WatchdogTimeout = 1;

return;

CTRLSTATUS,

FUNCPRD,

sizeof (sFuncPrd),

sizeof (sCtrlStatus), &CtrlStatus);

&FuncPrd);
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NeuralNet.c
Neural Net Control for Flexible Link.

Luis Gutierrez, 4/9/96

= Include Files */
#include "NNFlexLink.h"

#if  option(a4_globals)
#include "extcodeZ.h"
#else

#include <stdlib.h>
#include <stdio.h>
finclude <math.h>

fendif

/*************** vectors and Matrices for Neural Net *****************/
static Flt *H; /* Input to Hidden layer */

static Flt *Sigma; /* Hidden layer output */

static Flt *SigmaPrime; /* Derivatives of hidden layer outputs */
static Flt *W; /* Output layer weights */

static Flt *DeltaW; /* Delta of output layer weights */
Static Fit *V; /* Input layer weights */

static Flt *DeltaV; /* Delta of input layer weights */

/****‘k****************************************‘k**************‘k**********/

AllocateNN

Allocate vectors and matrices for the Neural Net. Initializes weight matrices
Returns 0 if allocation is successful, -1 otherwise.

Prototype:
Intl6 AllocateNN(Void);

Int1l6 AllocateNN(Void)
{

Infle i3
H = (Flt *) DSNewPtr (N2*sizeof(Flt));
Sigma = (Flt *) DSNewPtr(N2*sizeof(Flt)):;

SigmaPrime = (Flt *) DSNewPtr(N2*sizeof(Flt));

W = (Flt *) DSNewPtr((N2+1l)*sizeof(Flt));
DeltaW = (Flt *) DSNewPtr((N2+1l)*sizeof(Flt));

V = (Flt *) DSNewPtr({(Nl+1l)*N2*sizeof{Flt));
DeltaV = (Flt *) DSNewPtr((N1+1)*N2*sizeof(Flt)};

if (!H || !Sigma || !SigmaPrime || !'W || !DeltaW || !V]|| !DeltaV) {
DisposeNN{):
return 1;

}

/* initializes weights to zero */
for [1=0 ; i < {N241] ; i++) {
W{i] = 0;
DeltaW([i] = O;
}

to zero.



for (i=0 ;7 1 < {N1+1)*N2 ; i++} 1
Vi) = 6;
DeltaV([i] = O;
}

return 0;

DisposeNN
Frees memory used by vectors and matrices for the Neural Net.

Prototype:
Void DisposeNN(Void):;

Void DisposeNN{Void)
]
1
if {H)
DSDisposePtr(H);
if (Sigma)
DSDisposePtr(Sigma);
if {SigmaPrime)
DSDisposePtr(SigmaPrime);
if (W)
DSDisposePtr (W) :;
if (DeltaWwW)
DSDisposePtr (DeltaW);
if (V)
DSDisposePtr(V);
if (DeltaV)
DSDisposePtr(DeltaV):

H=Sigma=SigmaPrime=W=DeltaW=V=DeltaV=0;

return;

(-

NeuralNetCtrl
Neural net controller. Returns the output of the neural net.

Prototype:
Fl1t NeuralNetCtrl(Flt x[] , Flt fltre , Flt samplePrd, const sCtrlParms *ctrlParms);

Flt NeuralNetCtrl(Flt x[] , Flt fltre , Flt samplePrd, const sCtrlParms *ctrlParms)
{

Intl6 4 » 13

Flt KappaSgnFltre , Output , Ts_F Fltre , Ts_G_Fltre, Alpha=l;

/* Calculate H, Sigma , and SigmaPrime */
for (3=0;j<N2;j++) {
H[j] = VI[3l:
for (i=1;i<=N1;i++)
HIJ) += VIi*N2+j] * x[i-1];
Sigma[j] = 1.0 / (1.0 + exp(-(3j+1)*Alpha*H[i]));
SigmaPrime[j] = (j+1) * Alpha * Sigma([j] * (1 - SigmalJjl):
N

/* Calculate Neural Net Output */



Output = W[
for (i=1;i<

017

=N2;i++)

Output += W([i] * Sigma[i-1];

/* Update rules for weight matrices V and W */

/*

Consider sign of filtered error */

KappaSgnFltre = (fltre >= 0) 2 ctrlParms->Kappa : -ctrlParms->Kappa;

/* Optimize operations */

Ts G Fltre

= samplePrd * ctrlParms->G * fltre / 2;

Ts_F _Fltre = samplePrd * ctrlParms->F * fltre / 2;

/*

Update V. */

for (3=0;3j<N2;j++) {

V[3j] += DeltaVv[j]:

DeltaV([j] = Ts G_Fltre * (W[j+1] * SigmaPrime[j] - KappaSgnFltre * V[jl);
V[j] += DeltaVv[j]l:

for (i=1;i<=N1l;i++) {

KappaSgnFltre *

}

V[i*N2+j] += DeltaV[i*N2+j];

DeltaV[i*N2+j] = Ts_G_Fltre * (x[i-1] * W[j+1l] * SigmaPrime[]j] -
VIi*NZ+91);

V[i*N2+j] += DeltaV[i*N2+j];

}

/* Update W */
W[0] += DeltaW[O]:

DeltaW[0] =

Ts_F Fltre * (1 - KappaSgnFltre * W[0]):

W[0] += DeltaW[O0];
for (i=0;i<N2;i++) {
W[i+l] += DeltaW[i+1]; g
DeltaW([i+1] = Ts_F Fltre * (Sigma{i] - SigmaPrime[i] * H[i] - KappaSgnFltre *

Wiitl]);

W(i+l] += DeltaW([i+1];

}

return Output;

0l
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