Automatic Flight Control

Flight Control of a Fixed-Wing Aircraft

Luis Benigno Gutiérrez Zea

Facultad de Ingeniería Aeronáutica Universidad Pontificia Bolivariana

First semester - 2025

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 1/43

Outline

- Flight control of a fixed wing aircraft
- Fixed wing aircraft model
- Structure of flight control system
 - Longitudinal control
 - Lateral control
 - Multiloop control
- Design of flight control system
- 5 Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraf

2025 2 / 43

Flight control of a fixed wing aircraf

Outline

- Flight control of a fixed wing aircraft
- 2 Fixed wing aircraft model
- 3 Structure of flight control system
 - Longitudinal control
 - Lateral control
 - Multiloop control
- 4 Design of flight control system
- 5 Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 3 / 43

Flight control of a fixed wing aircraft

Flight control of a fixed wing aircraft

- Let us consider the flight control of a fixed wing aircraft.
- The purpose of the controller is to allow the aircraft to flight automatically tracking the set-points in airspeed, altitude and heading.
- This controller is a basic autopilot system.
- The aircraft considered for this control application will be a general model with a simplified propulsion system.

_			
Notes			
Notes			
Notes			

Outline

- Flight control of a fixed wing aircraft
- Fixed wing aircraft model
- Structure of flight control system
- Longitudinal control
- Lateral control Multiloop control
- Design of flight control system
- 5 Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control

Fixed wing aircraft model

• The equations of motion for the fixed wing aircraft are

$$\begin{split} \dot{\mathbf{p}}_{\mathbf{e}} &= \mathbf{C_{b/e}}^T \mathbf{V_b}, \\ \dot{\Phi} &= \mathbf{H}\left(\Phi\right) \Omega_{\mathbf{b}}, \\ \dot{\mathbf{V}}_{\mathbf{b}} &= \frac{\left(\mathbf{F_{a,b}} + \mathbf{F_{t,b}}\right)}{m} + \mathbf{G_b} - \Omega_{\mathbf{b}} \times \mathbf{V_b}, \\ \dot{\Omega}_{\mathbf{b}} &= \mathbf{I_b}^{-1} \left(\mathbf{M_{a,b}} + \mathbf{M_{t,b}} - \Omega_{\mathbf{b}} \times \mathbf{I_b} \Omega_{\mathbf{b}}\right). \end{split}$$

Fixed wing aircraft model

Where

$$\mathbf{G_b} = \begin{bmatrix} -gs\theta \\ gs\phi c\theta \\ gc\phi c\theta \end{bmatrix}$$

$$\begin{split} \mathbf{G_b} &= \begin{bmatrix} -gs\theta \\ gs\phi c\theta \\ gc\phi c\theta \end{bmatrix}, \\ \mathbf{F_{a,b}} &= \mathbf{C_{b/w}F_{a,w}} = \mathbf{C_{b/w}} \begin{bmatrix} -D \\ -C \\ -L \end{bmatrix} = \mathbf{C_{b/w}} \begin{bmatrix} -\bar{q}SC_D, \\ -\bar{q}SC_C, \\ -\bar{q}SC_L, \end{bmatrix}, \end{split}$$

$$\mathbf{F_{t,b}} = \begin{bmatrix} F_t \\ 0 \\ 0 \end{bmatrix}.$$

Fixed wing aircraft model

And

$$\begin{split} \mathbf{M_{a,b}} &= \begin{bmatrix} l \\ m \\ n \end{bmatrix} = \begin{bmatrix} \bar{q}SbC_l, \\ \bar{q}ScC_m, \\ \bar{q}SbC_n, \end{bmatrix} - \Delta CG_b \times \mathbf{F_{a,b}}, \\ \mathbf{M_{t,b}} &= -\Delta CG_b \times \mathbf{F_{t,b}} \end{split}$$

otes

Notes

Notes

•			

Fixed wing aircraft model

• The aerodynamic coefficients are modeled by

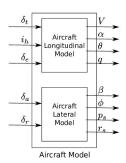
$$\begin{split} C_L = & C_{L,0} + C_{L,\alpha}\alpha + C_{L,\delta f}\delta_f + C_{L,\delta i}\dot{i}_h + C_{L,\delta c}\delta_e + \frac{c}{2V}\left(C_{L,\alpha}\dot{\alpha} + C_{L,q}q\right) + C_{L,M}M, \\ C_D = & C_{D,0} + \frac{\left(C_L - C_{L,min\,drog}\right)^2}{\pi ARe} + C_{D,M}M, \\ C_C = & C_{C,\beta}\beta + C_{C,\delta_c}\delta_a + C_{C,\delta_c}\delta_r + \frac{b}{2V}\left(C_{C,p}p + C_{C,r}r\right), \\ C_l = & C_{l,\beta}\beta + C_{l,\delta_a}\delta_a + C_{l,\delta_c}\delta_r + \frac{b}{2V}\left(C_{l,p}p + C_{l,r}r\right), \\ C_m = & C_{m,0} + C_{m,\alpha}\alpha + C_{m,\delta_f}\delta_f + C_{m,b}\dot{i}_h + C_{m,\delta_c}\delta_e + \frac{c}{2V}\left(C_{m,\Delta}\dot{\alpha} + C_{m,q}q\right) + C_{m,M}M, \end{split}$$

 $C_n = C_{n,\beta}\beta + C_{n,\delta_a}\delta_a + C_{n,\delta_r}\delta_r + \frac{b}{2V}\left(C_{n,p}p + C_{n,r}r\right).$

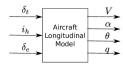
Fixed wing aircraft model

• And the propulsion system is modeled by

$$\mathbf{F_{t,b}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} F_{t_{max}} \delta_t.$$


Outline

- Flight control of a fixed wing aircraft
- Fixed wing aircraft model
- Structure of flight control system
 - Longitudinal control Lateral control
 - Multiloop control
- Design of flight control system
- 5 Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control

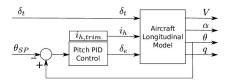

Notes

Linearized aircraft model

Notes			
Notes			
Notes			
<u> </u>			

Linearized aircraft longitudinal model

C L. B. Gutiérrez (UPB)

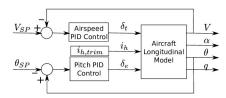

ight Control of a Fixed-Wing Aircraft

025 13 / 43

Structure of flight control system

.

Pitch control - inner loop (with elevator)

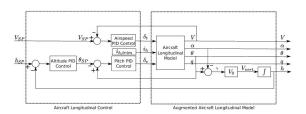

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 14/43

Structure of flight control system Longitudinal control

Airspeed control loop (with elevator)

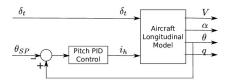

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 15 / 43

Structure of flight control system Longitudinal control

Altitude control - outer loop (with elevator)

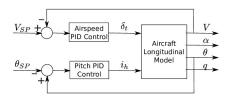

Notes

Notes

_			
_			

tructure of flight control system Longitudinal control

Pitch control - inner loop (without elevator)

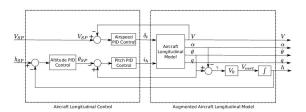

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed Wing Aircraft

2025 17 / 43

Structure of flight control system Longi

Airspeed control loop (without elevator)

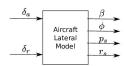

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 18 / 43

Structure of flight control system Longitudinal control

Altitude control - outer loop (without elevator)



C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 19 / 43

Linearized aircraft lateral model

N	ot	e

-		
-		

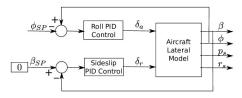
Notes

Notes

		·

tructure of flight control system Lateral control

Roll control - inner loop

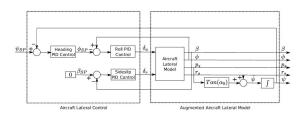

C L. B. Gutiérrez (UPB)

light Control of a Fixed Wing Aircraft

2025 21/43

Structure of flight control system Lateral co

Sideslip control loop

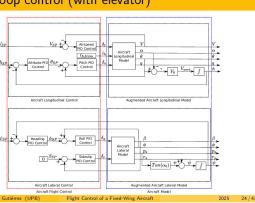

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 22 / 43

Structure of flight control system Lateral control

Heading control - outer loop



C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 23 / 43

Multiloop control (with elevator)

N	otec

Notes

Notes

	-	-	-

Design of flight control system

Outline

- Flight control of a fixed wing aircraft
- 2 Fixed wing aircraft model
- 3 Structure of flight control system
 - Longitudinal control
 - Lateral control
 - Multiloop control

Design of flight control system

- 5 Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control

Flight Control of a Fixed-Wing Aircraft

2025 26 / 43

Design of flight control system

Design of flight control system

- Design the autopilot control loops in this order
 - Longitudinal control
 - Pitch PID.
 - Airspeed PID.
 - Altitude PID.
 - Lateral control
 - Roll PID.
 - Sideslip PID.
 - Sideslip PID.
 Heading PID.

C L. B. Gutiérrez (UPB)

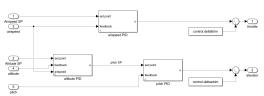
Flight Control of a Fixed-Wing Aircraft

025 27/4

Implementation of linear controllers for nonlinear plants

Outline

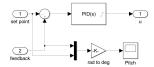
- Flight control of a fixed wing aircraft
- 2 Fixed wing aircraft model
- 3 Structure of flight control system
 - Longitudinal control
 - Lateral control
 - Multiloop control
- 4 Design of flight control system
- Implementation of linear controllers for nonlinear plants
- 6 Simulink model for the fixed wing aircraft
- Simulink model for the flight control system
 - Longitudinal control
 - Lateral control


Notes			
-			

Notes Implementation of linear controllers for nonlinear plants Design for linearized plant model Design for linearized plant model implemented with nonlinear plant U_0 Simulink model for the fixed wing aircraft Notes Outline Flight control of a fixed wing aircraft 2 Fixed wing aircraft model Structure of flight control system Longitudinal control Lateral control Multiloop control Design of flight control system 5 Implementation of linear controllers for nonlinear plants 6 Simulink model for the fixed wing aircraft Simulink model for the flight control system Longitudinal control Lateral control Simulink model for the fixed wing aircraft Notes Simulink model for the fixed wing aircraft Simulink model for the fixed wing aircraft Notes Simulink model for the fixed wing aircraft

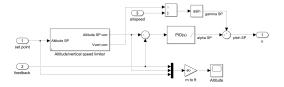
Dimulink model for the fixed wing aircraft

To a the fixed wing ai

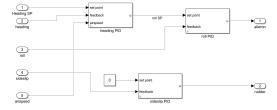

Simulink model for the flight control system Notes Outline 1 Flight control of a fixed wing aircraft Fixed wing aircraft model Structure of flight control system Longitudinal control Lateral control Multiloop control Design of flight control system 5 Implementation of linear controllers for nonlinear plants 6 Simulink model for the fixed wing aircraft Simulink model for the flight control system Longitudinal control • Lateral control Simulink model for the flight control system Notes Flight control system Aircraft position [0:0:0] Notes Flight control system Notes Longitudinal control


Simulink model for the flight control system | Longitudinal control

Inner loop: pitch PID

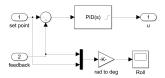


Airspeed PID


Outer loop: altitude PID

Flight Control of a Fixed-Wing Aircraft

Lateral control



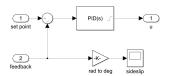
Notes

Notes

Notes

Inner loop: roll PID

C L. B. Gutiérrez (UPB)

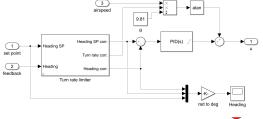

light Control of a Fixed-Wing Aircraft

025 41 / 43

Notes

imulink model for the flight control system Lateral contro

Sideslip PID



C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

025 42/4

Outer loop: heading PID

Universidad Pontificia Bolivariana

C L. B. Gutiérrez (UPB)

Flight Control of a Fixed-Wing Aircraft

2025 43 / 4

-			
-			
Notes			
-			
Natas			
Notes			
Notes			