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Classical control systems

Classical control systems

Classical control theory involves the design of control systems for
single input single output (SISO) systems.

The plant and the controller are assumed to be linear time
invariant systems.

In case of nonlinear plants the same type of linear controllers can
be designed based on the linearized model of the plant.

The linear control of nonlinear plants can be achieved when the
plant presents smooth nonlinearities about the operating point.

In the design process it is common to use frequency domain
tools, but those can be combined with time domain simulation

and optimization tools. {Upiceridad
ntificia
Bolivariana

© L.B. Gutiérez (UPB) Classical Control Systems 2025 4/43

Notes

Notes

Notes

Notes




Classical control systems

Classical control systems

@ Reuvisit the control problem for a SISO linear time invariant plant
with transfer function P(s), using a unit feedback control
structure as shown in the figure.

E(s) U(s)
R(s) T C(s) | P(s) > Y (s)
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Classical control systems

Classical control systems

o The model of the plant, P(s), is assumed to be known.

@ For the classical control problem, the control system transfer
function, C(s), will be designed to fulfill some control
requirements, in summary, to minimize the error e(t)
guaranteeing the robust stability and performance of the closed
loop system.

o ((s) is called the controller or compensator.
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Types of compensators

Types of compensators

In classical control the compensators can be:

o Proportional control or P control.

o Proportional-integral control or Pl control.
Proportional-derivative control or PD control.
Proportional-integral-derivative control or PID control.
Lead compensator.

Lag compensator.

e & ¢ ¢ ¢

Lead-lag compensator.
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Types of compensators

Notes
P control
@ In this case
C(s) — Kp (1)
o K, is the proportional gain.
universidad
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Types of compensators
Notes
Pl control
@ In this case
- K
C(s)=K,+ — (2)
s
e K, is the proportional gain.
o [; is the integral gain.
@ Sometimes the Pl control transfer function is expressed as
i)
C(s) =K, <1+—> (3)
TiS
o 7, is the integral time constant or reset.
. . K g { Universidad
@ Notice that K; = — prontficia,
i
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Types of compensators
Notes
PD control
@ In this case
C(s) = Kp+ Kas (4)
e K, is the proportional gain.
e [, is the derivative gain.
o Sometimes the PD control transfer function is expressed as
C(s) = Ky (1+ 7a5) (5)
e 7, is the derivative time constant or rate.
o Notice that K, = K,7;. ot
2L Bolivariana
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Types of compensators
Notes

PID control

@ In this case

K;
C(s) = KP+T+Kd8 (6)

e K, is the proportional gain.

o [; is the integral gain.
e [, is the derivative gain.

o Sometimes the PID control transfer function is expressed as

1
C(s) = K, (1 + —t Tds) 7)
;8
o 7, is the integral time constant or reset.
e 74 is the derivative time constant or rate. .
: Ky o ey
o Notice that K; = — and K3 = K,74. 2 Bolivariana
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Types of compensators

Notes
Lag compensator
@ In this case
Tgs+1
Ofs) = Ke (8)
QgTys +
e [, is the gain of the lag compensator.
@ 7, is the lag compensator time constant.
® o, > 1is a design parameter for the lag compensator.
universidad
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Types of compensators
Notes
Lead compensator
@ In this case
148+ 1
O(s) = Ke——— ©
agTys + 1
e [, is the gain of the lead compensator.
@ 7, is the lead compensator time constant.
@ oy < 1is a design parameter for the lead compensator.
M
2L Bolivariana
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Types of compensators
Notes
Lead-lag compensator
@ In this case
48+ 1 Tgs+ 1
CO(s) = K, (ras+1) (rgs+1) (10)
(agras + 1) (agrgs + 1)
o [, is the gain of the lead-lag compensator.
@ 74 is the lead compensator time constant.
® oy < 1is a design parameter for the lead compensator.
@ 7, is the lag compensator time constant.
® o, > 1is a design parameter for the lag compensator.
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Design requirements in the time domain

Design requirements in the time domain

The closed loop control system has some design requirements:
@ Stability: the closed loop system should be stable.
@ Performance:
o Steady state response for a specified reference signal, r(t):
o less| < essmaz-
o Transient state response referred to step response:
o M, < Mpmaz
® lr <trmaz
® Iy <tsmax
@ Robustness: the closed loop system should behave well under
internal and external uncertainties (model uncertainty,
perturbations, and sensor noise).
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Design requirements in the frequency domain

Design requirements in the frequency domain

The closed loop control system has some frequency domain design
requirements:
o Stability: the closed loop system should be stable.
o PM > 0°
e GM > 0dB
@ Performance:
o M, < Mymax
e w, or bandwidth of control system.

4 universidad
Pontificia
3L Bolivariana

© L.B. Gutiérez (UPB) Classical Control Systems 2025  19/43

Stability margin requirements

Outline

© Stability margin requirements

universidad
4 Pontificia
3L Bolivariana

© L.B. Gutiérez (UPB) Classical Control Systems 2025  20/43

Notes

Notes

Notes

Notes




Stability margin requirements

Stability margin requirements

The closed loop control system has stability margin requirements for
a robust control system:

@ Robust stability is guaranteed with good phase and gain
margins.
o PM > PMy,in
o GM > GMpyin
o A good phase margin means PM,,;, > 60°.
e A good gain margin means G P,;,, > 20dB.
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© Classical control system design
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@ Frequency domain method
@ Empirical tunning rules
@ Optimization of controller gains

MR pisican

3L Bolivariana

© L.B. Gutiérez (UPB) Classical Control Systems 2025 22/43

Classical control system design

Classical control system design

To design a classical control system:
o Select the control strategy.
@ Tune the controller parameters. There are several methods:
Root locus method.
Frequency domain method.
Empirical tunning rules.
Optimization techniques.

© L.B. Gutiérez (UPB) Classical Control Systems 2025 23/43

Classical control system design  Root locus method

Root locus method

@ The root locus method is based on a tool called the root locus.

o The root locus is a zero-pole diagram that shows the location
of the closed loop poles in the complex plane parametrically
respect to a design parameter.
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Classical control system design  Root locus method
Root locus

o Consider the closed loop system shown in the figure.

R(s) e K | P(s) —» Y (s)

N(¢
o Where P(s) = (5) and K is a design gain.

D(s)
@ The closed loop transfer function is given by
N(s)
Y(s)  KP(s) D(s) KN(s) (11)
R(s) 1+ KP(s) N(s) ~ D(s)+ KN(s)
1+ K
D(s)
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Classical control system design  Root locus method
Root locus
@ The closed loop characteristic equation is
D(s)+KN(s)=0 (12)

o The root locus is the plot of the roots of (12) parametrically
respect to K, for 0 < K < oo.

e The complementary root locus is the plot of the roots of (12)
parametrically respect to K, for —oo < K < 0.
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Classical control system design  Root locus method

Root locus

@ Notice that when K — 0
Jim (D(s)+ KN(s)) =D(s) =0 (13)

@ Therefore, the root locus starts at the poles of the open loop
system P(s).

@ Notice that when K — oo

lim (% + N(s)) =N(s)=0 (14)

@ Therefore, the root locus ends at the zeros of the open loop

system.
© L. B. Gutiérrez (UPB) Classical Control Systems 2025 27/43
Classical control system design  Root locus method

The real axis to the left of an odd number of poles and zeros is part of
the root locus.

If P(s) has m zeros and n poles with m < n, then there will be n —m
branches of the root locus that go to infinity.

@ The n — m asymptotes corresponding to those branches cross the real
axis at «, with

n m

Z i — Z Z;

i—1 =1
= 15
a p— (15)

@ where p; with i =1,..., n are the poles, and z; with j =1,..., m are

the zeros of P(s).

@ The asymptotes form angles symmetrical respect to real axis. If n —m
is odd, one of the asymptotes will be the negative real axis. Universidad
_ P(s) Pontiicia
@ The breakaway points are located at the roots of 7 = (. & Bolivariana
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Classical control system design  Root locus method

Notes
Root locus
o In Matlab/Octave, the command rlocus allows to plot the root
locus.
@ For example, to plot the root locus of
4
P(s)= 5—5—5—%
s3+ 552 + 125+ 8
@ use the following code
P = tf(4,[1 5 12 8])
rlocus(P); grid on
. . universidad
Pontificia
@ or try the sisotool in Matlab. &8 Pontlicia
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Classical control system design  Root locus method
Notes
Root locus
@ getting the root locus p
. universidad
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Classical control system design  Root locus method
. . Notes
Design of controllers using the root locus
o To design a controller, the root locus can be used based on
these guidelines
Controller type Add Tune
P Control - Gain
PD Control One negative real zero Gain — zero position
PI Control One negative real zero and one pole at zero Gain ~ zero position
PID Control Two negative real zeros and one pole at zero Gain - zero positions
Lead Control One negative real zero and one more negative real pole | Gain - zero position - pole position
Tag Control One negative real pole and more negative real zero Gain - pole position - zero position
Tead-lag Control Two negative real zeros and two negative real poles Gain — zero positions - pole positions
@ The integral part allows to obtain a zero steady state error for a
step reference (in case the plant has no poles at zero).
@ The derivative part should be used to stabilize the plant.
universidad
Pontificia
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Classical control system design  Frequency domain method
Notes

Frequency domain method

@ Tune the gain of the controller or add a pole at zero (Pl or PID
controllers) to fulfill steady state requirements.

@ Use the locations of poles and zeros of the compensator to

shape the open loop transfer function trying to reach the desired
gain and phase margins.

@ Verify the time response of the closed loop system or repeat the
process until a satisfactory design is found.
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Classical control system design  Empirical tunning rules

Empirical tunning rules

@ Empirical tuning rules are methods for tuning PID controllers
based on data taken from the open loop or closed loop response
of the plant.

@ These methods do not require to know the model of the process,
they require access to the model to perform some tests previous

to the tuning.
@ There are many rules that have been devised for the purpose of
tuning the controllers but the most famous are the

Ziegler-Nichols rules.
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Classical control system design ~ Empirical tunning rules

Ziegler-Nichols open loop method
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Stopresponse
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Classical control system design ~ Empirical tunning rules

Ziegler-Nichols open loop method

@ Measure the process parameters K, 7, t; to approximate the
process dynamics by a first order system with time delay:

Kest
P(s) =
TS+ 1
Stepresporse _
B
o
. p
L /
| /
/
/
B /
/
/
B /
/ universidad
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Classical control system design ~ Empirical tunning rules

Ziegler-Nichols open loop method

o Obtain the gains of the controller using

Controller type | K, T Td
P z 00 0
ty
T td
Pl 09— | — 0
tg |1 0.3
PID 122 | 2t, | 0.5t
tq
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Classical control system design  Empirical tunning rules

. . Notes
Ziegler-Nichols closed loop method

o Control the plant with a with a proportional control in a closed loop control
structure:

o Find the step response of the closed loop system increasing the controller gain, K,
until a critical value is found that makes the closed loop system to be marginally
stable (i.e. the step response is a constant magnitude oscillatory response).

@ The value of the gain obtained under this condition is the critical gain, K.

@ Record the period of the oscillation in the closed loop response, this is the critical
period, T, .
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Classical control system design  Empirical tunning rules
i : Notes
Ziegler-Nichols closed loop method
@ Obtain the gains of the controller using
Controller type K, T Td
P 05K | oo 0
PI 045K, | 2| 0
e |79
PID classical ZN rule 0.6K,, & Lo
2
Ter
PID Pessen integral rule | 0.7K, 0—‘_'1 0.15T,,
T T
PID some overshoot 0.33K,. % ‘;’
Tor 2
PID no overshoot 02K, | = =
2 3 {Ugiversidad
Pontificia
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Classical control system design  Optimization of controller gains
L. . . Notes
Optimization of controller gains

o If the model of the plant is known, some optimization techniques

can be used to optimize the gains of the controllers.

@ Define a performance index to minimize, for instance

o
ISECE — / (1) + [u(t)|? d.
Jo

@ In practice impose constraints to the gains to guarantee a

solution of the optimization problem, for instance
0< K, < Kpmar, 0 < Ki < Kipmaz, 0 < Kg < Kgmaz-

@ Solve the optimization problem under given constraints to find

the optimal values of the controller gains.
4univer_s@d_ad
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Examples

Example 1

Use the root locus method to design a controller for the plant with transfer function

52.59
s° +23.928% + 1

(16)

55 +215.5
In the design process try several kinds of controllers:

@ P control.

@ PD control.

@ Pl control.

@ PID control.

In each case try to design the best control trying to fulfill the following requirements

ees <1%

M, <5%

ts <ls
If it is not possible to fulfill all of the requirements explain why in each c upiversidad
Bolivariana
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Examples

Example 2

Use the Ziegler-Nichols method to design P, Pl and PID controllers
for the plant with transfer function

79.77
8% +26.582 + 221.3s + 583.8

(17)
Modify the obtained gains trying to fulfill the following requirements

ess <1%
M, <5%
t, <ls

If it is not possible to fulfill all of the requirements explain why in
each case.
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Examples

Example 3

Optimize the gains of the PID controllers designed in examples 1 and
2, finding the gains that minimize the performance index

e(®)) + v |u(t)]? dt

ISECE = /
Jo

with the restrictions

0 < K, < 100
0< K; <50
0< Ky <20

En each case choose the value of v trying to improve the response of
the controller and avoiding excessive control effort.
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