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Mathematical model of linear time invariant systems
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@© Mathematical model of linear time invariant systems
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Mathematical model of linear time invariant systems

Mathematical model of linear time invariant
systems

We have seen that the mathematical model for a single input single
output, dynamical, lumped parameter, linear time invariant system
can be:
o A differential equation (of any order).
o A state space model (a set of first order differential equations).
@ A transfer function representing the differential equation
(relationship between the Laplace transforms of the output and
the input of the system).
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Mathematical model of linear time invariant systems

Mathematical model of linear time invariant
systems

d t
Using the notation D o pr and / 4 / (+)dA, the mathematical

model of a dynamical system, with input signal u(¢) and output signal
y(t), is represented by an ordinary differential equation of the form

(anD" +a, 1 D"t a, oDV 24+ asD* + a1 D+ a,n) y(t) =
(b D™ + by D™ L+ by D+ bg) u(t),
where m < n for causal systems.
M e
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Mathematical model of linear time invariant systems

Mathematical model of linear time invariant
systems

Using the operator notation

Ly (y(t) = (@ D" + a4yt D" + @ sD™* + ...+ a2 D* + a1 D + ag) y(t)
and

L, (u(t)) = (mem + b1 D™ by o D™ 2 4+ b, D? + by D + bl,) u(t),
we can write the differential equation as

Ly (y(1)) = Lu (u(t)) 1)
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Mathematical model of linear time invariant systems

Mathematical model of linear time invariant
systems

The model represented by equation (1) is linear since operators
L, and L, are linear.

That is: Ly (c1y1(t) + caya(t)) = erLy (ya(t)) + c2Ly (y2(t)) for
all c1, ca, y1(t), and g (t); and

Ly, (cruq(t) + coua(t)) = 1Ly, (uy(t)) + caLy, (ua(t)) for all ¢q,
¢y, uy(t), and uq(t)

@ The model represented by equation (1) is invariant since
operators L, and L, are invariant (respect to time t).

That is: if L, (y(t)) = a(t), then L, (y(t — to)) = ot — to) for
all y(t) and ty; and if L, (u(t)) = 5(t), then u

Ly (u(t — to)) = B(t — to) for all u(t) and t
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Analysis of linear time invariant models in time domain
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© Analysis of linear time invariant models in time domain
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Analysis of linear time invariant models in time domain

Analysis of linear time invariant models in time
domain

Problem

Given the mathematical model of a linear time invariant system
represented by equation (1), and given the input signal u(t) for all ¢,
determine the output signal y(t) for all ¢ (the solution of the
differential equation given by equation (1)).
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Solution of ordinary differential equations
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© Solution of ordinary differential equations
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Solution of ordinary differential equations

Solution of ordinary differential equations

The solution of equation (1) can be obtained:
@ Analytically.

@ Numerically.
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Analytical solution of ordinary differential equations
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© Analytical solution of ordinary differential equations
@ Meaning of natural and forced responses
@ Natural response
@ Forced response
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Analytical solution of ordinary differential equations

Analytical solution of ordinary differential equations

The solution of equation (1) is split in two terms:

y(t) = yalt) +y;(t) (2)

where y,,(t) is the natural response of the system (the
homogeneous solution), which is the solution of

Ly (yn(t)) = 0 ®3)

and y;(t) is the forced response of the system (the particular
solution), which is a particular solution of

Ly (ys(1)) = Lu (u(t)) Q)

Notice that adding equations (3) and (4) we obtain equation (1),
(using the linearity of L, and L, and equation (2))

© L.B. Gutiérez (UPB) Time Domain Analysis 2025  13/53

Analytical solution of ordinary differential equations  Meaning of natural and forced responses

Meaning of natural and forced responses

@ The natural response is the way in which the system responds
due to its internal dynamics and represents the way internal
energy is exchanged within system components.

@ The forced response is the way in which its internal dynamics
is forced to respond due to the input signal.
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Analytical solution of ordinary differential equations  Natural response

Natural response

To solve for the natural response we need to solve
homogeneous equation (3), which states the a linear combination
of y,(t) and its derivatives is zero, meaning that y,,(¢) and its
first n derivatives should be linearly dependent functions.
Candidate functions that fulfill that conditions are exponential
functions (of the form e°’), sinusoidal functions (of the form
cos(wt) or sin(wt)), and exponential times sinusoidal functions
(of the form e“cos(wt) or e sin(wt)).

Using Euler's identity (¢’ = cos(8) + jsin(0)) it is possible to
show that all these functions can be writen as combinations of
functions of the exponential form €', allowing r to be a complex
number (r € C)

o Using these facts we assume that that y,,(t) = ™ for some
reC.
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Analytical solution of ordinary differential equations  Natural response
Natural response

@ Replacing y,(t) = e in equation (3) we get
Ly (ya(t)) = Ly (e") =0

e But noticing that DFe™ = rke™, we get
Ly (yan(t)) = (anr” F " L ar an) et=0

o Implying that
A" + Q™™ 4 ar +ag = 0. (5)

e Equation (5) is the characteristic equation of the system.
The solutions of this equation, p; € C, i = 1,2,...,n, are the
system roots or system poles.
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Analytical solution of ordinary differential equations  Natural response

Natural response

o Notice that for a system modeled by equation (1), the transfer
function is given by
Y(s) _ bps™ + Drn18™ 4 b 28™ 24 . 4 bas® + bis + by

U(s) ApS™ + Q18" 1+ @y 98" 2+ ...+ @282 + a18 + ag

@ Denoting the numerator of the transfer function as N(s) and
the denominator as D(s), such that

N(8) =bps™ + by 18™ F + by_08™ 2+ ... + bys® + bys + by
D(s) =ans™ + 18" L nas” 2 4 a8 + ars + ag
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Analytical solution of ordinary differential equations  Natural response

Natural response

@ The characteristic polynomial of the system can be defined
as
P(s) = D(8) = aps"+an 18" 1 +a, 28" 2+, . +axs*+a,s+ag.

o Therefore, the characteristic equation given by (5) can also
be obtained from the transfer function as

P(s) = D(8) = ap8" + 18" Ha, 98" 2. . ags® +as+ag = 0.

(6)
i
Bolivariana
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Analytical solution of ordinary differential equations  Natural response

Natural response

@ The system poles are the roots of the characteristic
polynomial of the system or the solutions of the
characteristic equation of the system

. . . Y(s
@ Note that if p; is a system pole then lim () = 00
s=p; U(s)
g Universidad
Pontiticia
2L Bolivariana
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Analytical solution of ordinary differential equations  Natural response

Natural response

o Given that there are n poles for a system of order n, there are
exactly n independent solutions of homogeneous equation (3)

@ Thus, given the linearity of L,, the general form of the natural
response for the system modeled by equation (1) is

n
yn(t) = Zcieplf = c1ePt 4 cpeP?! 4 et 7

i=1

Where p; € C, i = 1,2,...,n, are the system poles, and
¢ €C,i=1,2,...,n are constants depending on the initial

conditions of the system.
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Analytical solution of ordinary differential equations  Natural response

Natural response

e What to do for poles with multiplicity greater than one?

@ When a pole p; has multiplicity ¢ > 1, then the solutions found
in y,(t) will be of the form ePit tePit t2epit .. ta-tepit

universidad
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Analytical solution of ordinary differential equations  Natural response

Natural response

@ To avoid using complex values for ¢; when p; is a complex
number, we can use the fact that complex roots appear in
complex conjugate pairs given that the coefficients of the
characteristic polynomial are real numbers.

o If p; = 0; + jw; and p;11 = pf = 0; — jw; are a pair of complex
poles we can write

cie"t + cipr et =TI g el i)t

‘ e]Acleolie]wli + ‘Ci+l‘ e]Ac”lemie—]wﬂ

3L Bolivariana
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Analytical solution of ordinary differential equations  Natural response

Natural response

o But, given that ¢;11 = ¢}, 50 |ci41]

and Zc¢;41 = —Z¢;, it can be written

GEPE + iy Pt = || €145 et |, | et et

=ci| i gritgivit 4 leil e—iLeiguit g=jwit

it —i(witt+Ze:)

=ci| eoitei(wittle) 4 leile

it (C;(W-,HA(,) + 6—;(w-,t+4(,)>

ei] €7 cos (wit + ZLei)
ci| cos (£c;) €7 cos (wit) — 2 |cs| sin (ZLe;) €7 sin (wit)

=2

=d;e”"cos (wit) + di 17" sin (w;t)

where d; = 2 |¢;| cos (Z¢;) and diy = —2|c;| sin (ZLe;)

universidad
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Analytical solution of ordinary differential equations  Natural response

Natural response

In summary

o If p; is a real pole, write in y,(t) the term ¢;eP

o If p; = 0; + jw; and p;1 = pf = 0; — jw; are a pair of complex
poles, write in y,(t) the terms c;e%*cos (wit) + c;y1e7 " sin (w;t)

o If p; is a real pole with multiplicity ¢ > 1, write in y,(t) the
terms c;ePt| cipatelit cipat?ePit, L cipg1t? Ll

o If p; =0, + jw; and p;11 = pf = 0; — jw; are a pair of complex
poles with multiplicity ¢ > 1, write in y,,(¢) the terms
c;e%cos (wit), ciyre%sin (wit), ciyote”cos (wit),
Cipstetsin (wit), . . ., Cipag—ot? e cos (wit),
Cipag—1t1 e sin (w;t)
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Analytical solution of ordinary differential equations  Forced response

Forced response

@ To solve for the forced response it is required to find a
particular solution of equation (1), so y(t) fulfills equation (4),
repeated here

Ly (ys (1)) = Lu (u(t))
There are several methods to find y(t):
o Undetermined coefficients/annihilator method.
@ Variation of parameters method.

@ Transfer function method for input signals of the form ¢ (with
s € C) or e”tcos (wt + @).
M e
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Analytical solution of ordinary differential equations  Forced response

Undetermined coefficients/annihilator method

o Let L be an annihilator operator of the input signal u(¢), that
is a differential operator, similar to L, or L,, such that

L(u(t) =0 (8)

o | we apply L to the differential equation (equation (1)), we get
L(Ly (ys(1)) = L (Lu (u(t)))

But
L (Ly (u(t))) = Lu (L (u(t))) = L (0) = 0
et
Bolivariana
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Analytical solution of ordinary differential equations  Forced response

Undetermined coefficients/annihilator method

Therefore

L(Ly (ys(1)) =0 9)

e Equation (9) is a homogeneous equation that can be solved the
same way that we solved for the natural response, y,,(t), using
equation (3).

o In the the forced response, y(t), any components already
present in y,(t) should be discarded.

o Coefficients in y(t) are the undetermined coefficients, they
are calculated replacing y4(¢) in (4) and guaranteeing that the
equation is fulfilled. Upiversidad
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

© When the input signal is of the form u(t) = e with s € C, we
can expect the forced response to be of the same form
ys(t) = Ce
where C'is an appropriate constant.
o Replacing u(t) = e** and y;(t) = Ce® in equation (4), we obtain

(@nS™ + Q18"+ 28" 2+ ..+ a8 + a1 + ag) Ce™ =
(bnS™ + by—18™ + .+ bis + b) €
Therefore, given that this equation is valid for all £ € R, it results that
Y(s) DnS™ + bn18™ L+ + bis+ by

U(s) @™+ ap_18" 1+ ay 98" 2+ ...+ azs2 +a1s +ag
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

If H(s) = 1)

i0) is the transfer function of the system, the forced
s

response of the system, when the input signal is of the form
u(t) = e*t, will be

yp(t) = H(s)e™

universidad
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

o If the input signal is of the form u(t) = Aecos (wt + ¢), note
that

u(t) =Ae cos (wt + ¢)

éeﬂi (ej(wiﬂﬁ) + e*](wiﬂ‘?))

Aei? Ae~

(o+jw)t e3¢ t )t
- elotiw)t 4 elo—iw
2 2
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + @)

@ Using the linearity of the system we obtain
Aei%
i) elotiw)t H (0 — jw) elo—iwlt
w) € o w) €
) +——H(o—jw)

:A;w [H (0 + ju)| L) lorion | A@;(‘) [H (0 — juw)| LHEi) ot

:A |H (0 + jw)| ei(¢+ZH(o+jw)) (oo, AlH (0 + jw)]| ¢ i(¢+LH (o+jw)) (

ys(t) =

(o—jw)t
2 2
=A|H (o + jw)|e”'cos (wt + ¢+ LH(o + jw))
o The fact that H (0 — jw) = H (0 + jw)" has been used.
M e
Bolivariana
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

If H(s) = L4 ;

0) is the transfer function of the system, the forced
s

response of the system, when the input signal is of the form
u(t) = Ae'cos (wt + ¢), will be

ys(t) = A|H(o + jw)| e cos (wt + ¢ + LH (0 + jw))
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

Remarks

@ The transfer function method to calculate the forced response
of the system is only valid for input signals that can be
decomposed in terms of the form e, cos (wt + ¢), or

e7cos (wt + ).

This method cannot be used when H(s) is undetermined in the
specific value of s for the input signal, i.e. when this value is a
system pole meaning that the input signal is of the form of one
of the system natural response components (when there is
resonance).
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Analytical solution of ordinary differential equations  Forced response

Transfer function method for input signals of the
form e (with s € C) or e”'cos (wt + ¢)

Remarks

@ Later on, the frequency domain method of analysis will
generalize the use of the transfer function to calculate the whole
system response (including natural and forced response) in the
general case.

@ When H(s) = 0 for the input signal, what happens is that the
forced response is zero. In that case the value of s will be one of
the system zeros, that is, a value of s that makes H(s) = 0.

@ The system zeros are the roots of the numerator polynomial of
H(s), N(s).
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© Examples
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Examples

Example 1: step response of a first order system

Find the step response of a first order system modeled by
(rD +1)y(t) = Kult),

where wu(t) is the input signal and y(t) is the output signal.
The step response is the response of the system when the input
signal is a step, i.e. u(t) =1(t)
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Examples

Example 2: step response of a second order
system: overdamped case

Find the step response of a second order system modeled by
(D +2¢waD +w2) y(t) = Kwiu(t),

where u(t) is the input signal and y(¢) is the output signal. In this
case assume that ¢ > 1 (overdamped case).
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Examples

Example 2: step response of a second order
system: critically damped case

Find the step response of a second order system modeled by
(D? +2CwaD +w2) y(t) = Kwiu(t),

where wu(t) is the input signal and y(¢) is the output signal. In this
case assume that ¢ =1 (critically damped case).
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Examples

Example 2: step response of a second order
system: underdamped case

Find the step response of a second order system modeled by
(D? + 26w, D +w?2) y(t) = Kw?u(t),

where w(t) is the input signal and y(t) is the output signal. In this
case assume that ¢ < 1 (underdamped case).
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Examples

Example 3: response of a third order system

Find the response of a system modeled by
(D® +8D* + 17D +10) y(¢) = (D + 2) u(t),

where u(t) is the input signal and y(t) is the output signal. Consider
these cases

0 ult)=1(9)

Q u(t) =r(t)

Q ut)=¢e"1(t)

Q u(t) =e21(t)

Q u(t) = sin(5t) 1(t)

@ u(t) = etcos (3t) 1(t) M e
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Time domain solution of the state space equations

Outline

@ Time domain solution of the state space equations
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Time domain solution of the state space equations

Time domain solution of the state space equations

For linear time invariant systems the state space representation will
be of the form

Xx(t) =Ax(t) + Bu(t) (10)
y(t) =Cx(t) + Du(t) (11)

where A, B, C, and D are constant matrices.
o With u(t) e R™, y(t) € R?, x(t) € R*
@ Therefore, A € R™", B € R™™, C € RP*", and D € RP*"™,

B/ Universidad
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Time domain solution of the state space equations

Time domain solution of the state space equations

To analyze a system behavior is to find the solution of the state
equations, x(t) for ¢ > t, given that u(t) is known for ¢ > ¢,
and the initial state x(¢y) = xq is known.

For simplicity ¢ is selected as zero.

So, the analysis problem is to solve the equation (10) for x(t)
for t > 0 given the input vector u(t) for t > 0 and the initial
state x(0) = xo.

After solving for the state vector, x(t), the output vector, y(t),
can be determined from output equation (11).

B/ Universidad
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Time domain solution of the state space equations
Time domain solution of the state space equations

To solve equation (10) in time domain we split the solution for the
state vector in two parts

X(t) = Xu(t) +x4(t) (12)

Where x,,(t) is the natural response of the state, which is the
solution of the homogeneous equation

Xn(t) = Ax, (1), with x,(0) =x(0) = x¢ (13)

and x(t) is the forced response of the state, which is the solution
of the state equation with zero initial state

X¢(t) = Axs(t) + Bu(t), with x4(0) =0 (14)
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Time domain solution of the state space equations

Time domain solution of the state space equations

To solve equation (13) for the natural response of the state, let's consider first the
following exponential matrix function

ARk A%
i S UR S

(15)

iAAk*ltkfl
(k= 1)!
>0 AR

Ay

k! .

B M e
=Ae¢

3L Bolivariana
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Time domain solution of the state space equations

Time domain solution of the state space equations

With this, the solution of the homogeneous equation (13) is

x,(t) = eAtxg

(16)
since, differentiating respect to time, the following is obtained
%, (1) = Aexg = Ax,(t)

with x,,(0) = e*x, = xq

universidad
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Time domain solution of the state space equations

Time domain solution of the state space equations

To solve equation (14) for the forced response of the state, let's
use the parameter variation method, in which the solution is assumed
to be of the form

x;(t) = eAn(t) (17)
now, differentiating respect to time, the following is obtained

5 (t) = Aey (1) +eR4(t),
and replacing in equation (14)
Aey(t) + er5(t) = Aety(t) + Bu(t)

B/ Universidad
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Time domain solution of the state space equations

Time domain solution of the state space equations
Resulting

A(t) = e *Bu(t).
Integrating respect to time, the solution for (t) is obtained

t
~(t) = / e Bu(\)d\.
Jo
Replacing in equation (17), the forced response is obtained as
t
x(t) :eAf/ e Bu()\)d\
Jo

t
:/ A= VBu()\)d\ (18)
Jo
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Time domain solution of the state space equations

Time domain solution of the state space equations

Replacing equations (16) and (18) in equation (12) the final solution
for the state is obtained as

t
x(t) = efxq + / A VBu(\)d. (19)
Jo

Replacing in the output equation (11) the result for the output of the
system is obtained as

t
y(t) = Cerlxq + / Ce2=VBu(\)d\ + Du(t). (20)
Jo
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Time domain solution of the state space equations

In summary

x(t) =(t)p%0 + / f #(t — NBu(\)dA,

y(t) =Co(t)xo + Afh(t — A)u(A)dA.
where

o(t) =er!
h(t) =C¢(t)B + D4(t)

@ ¢(t) is the time domain representation of the state transition
matrix of the system.

@ h(t) is the impulse response matrix of the system.
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Consider the linear time invariant system modeled by the differential
equation
(D*+5D+6) y(t) = (D +1)u(t)
For this system do the following
@ Obtain the observable canonical form of the state space model.
Obtain the controllable canonical form of the state space model.

2]

© Obtain the Jordan canonical form starting from the observable
canonical form of the state space model.

@ Obtain the Jordan canonical form starting from the controllable
canonical form of the state space model.

o

For each form of the state space model do the foIIowi‘{i{“S';)",fﬂ‘ﬂS{‘ﬂd
25 Bolivariana
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©® Calculate the state transition matrix of the system in the time
domain.
@ Calculate the transfer impulse response matrix of the system.
© Calculate the state and output responses of the system when
the input is a step signal, u(t) = 1(¢), and the initial state is
zero, x(0) = [0 O}T. Do this using each of the three forms
obtained for the state space model of the system.
@ Calculate the state and output responses of the system when
the input is zero, u(t) = 0, and the initial state is,
x(0) = [1 —I}T. Do this using each of the three forms
obtained for the state space model of the system.
Uy
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