Notes

Notes

Notes

Notes

• The dependent variables is the variable representing some attribute of the phenomenon, it is usually a **physical variable**.

C L. B. Gutiérrez (UPB)

Universida Pontificia Bolivariana

- a data table specifying the value of the signal or each time value or,
- a mathematical expression that allows to calculate the value of the signal or each time value or,
- a plot showing the value of the signal for each time value.

Classification of signals

variable.

- Depending on the continuous or discrete nature of the sets T and ϑ , the signals can be classified as:
 - Discrete time signals when T is a discrete set.
 - Continuous time signals when T is a continuous set.
 - **Discrete variable signals** when ϑ is a discrete set.
 - Continuous variable signals when ϑ is continuous set.
 - A signal is digital when it is discrete time and discrete variable.

Signals Classification of signals

• A signal is **analog** when it is continuous time and continuous

. . .

C L. B. Gutie

Note:

- A continuous set is a set for which there exists a bijective function with the real set, $\mathbb{R}.$
- A discrete set is a set for which there exists a bijective function with a nonempty subset of the integers set, $\mathbb{Z}.$

Signals Classification of signals

Classification of signals

- A signal is a **deterministic signal** if the signal is known with complete certainty.
- A signal is a **random signal** or **stochastic signal** if there is uncertainty in any feature of the signal.
- A signal x(t) is **periodic** if there exists T > 0 such that x(t) = x(t+T) for all $t \in \mathbb{R}$. Otherwise the signal is **aperiodic**.

Notes

Notes

Notes

Universidad Pontificia Bolivariana

12/24

C L. B. Gutiérrez (UPB)

Notes

Notes

- Addition/subtraction.
- Differentiation.
- Integration.

Universidad Pontificia Bolivariana

Representation of some signals in terms of singular signals

Signals Operations with signals

Operations with signals

Signals

U

Example Plot the signals

O L B Gutie

- f(t) = 1(t+3) + r(t+2) 2r(t) + r(t-2) 1(t-3)
- The rectangular or unit pulse signal:
- $\Pi(t) = 1(t+1/2) 1(t-1/2)$
- \bullet The triangle signal: $\Lambda(t)=r(t+1)-2r(t)+r(t-1)$ Represent the signal x(t) in terms of singular signals

Outline

Signals

- Classification of signals
- Some simple signals
- Operations with signals

Systems

- Mathematical models
- Classification of Mathematical models

15/24

2025 16 / 24

14/24

Systems

O L B Gut

- A system is a set of interacting or interdependent components forming an integrated whole for a common purpose.
- A subsystem is a system that is part of another system.
- Signals are used for the variables that represent the behavior of the system.
- The system interacts with the environment through input and output signals.
- **Input signals** represent interactions from the environment acting on the system.
- **Output signals** represent interactions from the system acting on the environment.
- Internal signals represent interactions among internal components of the system.

Notes

Notes

Mathematical models

- A system can be represented by a mathematical model.
- A mathematical model is a mathematical representation of the system through a set of relations among the signals that represent the physical variables involved in the system.

Mathematical model

- In the mathematical model also appear some **parameters** representing the properties or attributes of the components of the system.
- The solutions of the mathematical model approximate the behavior of the system.
- A system can be represented by many mathematical models with different levels of approximation of the system behavior. That's why there is no unique mathematical model for a system.

Mathematical model abstraction

• A system can be abstracted mathematically as an operator that maps the input signals into the output signals.

Systems Mathematical models

• That is:

$$y(t) = \mathcal{H}\left\{u(t)\right.$$

where $\boldsymbol{u}(t)$ is the input signal and $\boldsymbol{y}(t)$ is the output signal.

Graphically:

$$u(t) \longrightarrow \mathscr{H}(\cdot) \longrightarrow y(t)$$

Systems Classification of Mathematical models

Systems Classification of Mathematical models

Classification of Mathematical models

- According to the number of inputs/outputs:
 - Single Input Single Output (SISO) systems.
 - One input/one output.
 - Multiple Input Multiple Output (MIMO) systems. Several inputs and/or several outputs.
- According to the time:
 - Continuous time systems.
 - System signals are continuous time.
 - Discrete time systems.
 - System signals are discrete time.
- According to the dependent variable:
 - Continuous variable systems.
 - System signals are continuous variable signals.
 Discrete variable systems.
 System signals are disaste usedeble signal.
 - System signals are discrete variable signals.

2025 19 / 24

17/24

18/24

Classification of Mathematical models

- According to the determinism:
 - Deterministic systems.
 - There is no uncertainty in system behavior. • Stochastic systems.
 - There is uncertainty in system behavior.
- According to the distribution in space:
 - Lumped parameter systems. Position in the system is not relevant for the signals. Signals only depend on time.
 - Distributed parameter systems.
 Position in the system is not relevant for the signals.
 Signals are dependent on time and position.

Pontificia Boliveriana

Notes

Notes

Notes

Classification of Mathematical models

Notes

Notes

Notes

Notes

- According to the dynamism:
 - Instantaneous systems. A system is instantaneous if $y(t_0) = \mathcal{H} \{ u(t_0) \}$ for all $t_0 \in \mathbb{R}$. That is, a system is instantaneous if $y(t_0)$ only depends on
 - $$\begin{split} &u(t_0) \text{ for any input signal.}\\ \bullet \mbox{ Dynamic systems.}\\ &A \mbox{ system is dynamic if } y(t_0)=\mathcal{H}\left\{u(t)\right\} \mbox{ for some } t\neq t_0, \mbox{ for } \end{split}$$
 - some $t_0 \in \mathbb{R}$. That is, a system is dynamic if $y(t_0) = \pi \{u(t)\}$ for some $t \neq t_0$, for u(t) for

Systems Classification of Mathematical models

some $t \neq t_0$.

Systems Classification of Mathematical models

Classification of Mathematical models

• According to the causality:

C L. B. Gutiérrez (UPE

- Causal systems. For a system such that $y_1(t) = \mathcal{H} \{u_1(t)\}$ and $y_2(t) = \mathcal{H} \{u_2(t)\}$, the system is causal if $y_1(t_0) = y_2(t_0)$ implies that $u_1(t) = u_2(t)$ for $t \leq t_0$. That is, a system is causal if the output a time $t_0, y(t_0)$, depends only on values of u(t) for $t \leq t_0$ for all $t_0 \in \mathbb{R}$.
- Non causal systems. A system is non causal if the output a time t_0 , $y(t_0)$, may depend on values of u(t) for some $t > t_0$ for some $t_0 \in \mathbb{R}$.

Universidad Pontificia

Classification of Mathematical models

- According to the variability in time:
 - Time invariant systems.
 - A system is said to be time invariant if $y(t) = \mathcal{H} \{u(t)\}$ implies that $y(t t_0) = \mathcal{H} \{u(t t_0)\}$ for all u(t) and for all $t_0 \in \mathbb{R}$. • Time variable systems.

Systems Classification of Mathematical models

A system if said to be time variable if it is not a time invariant system.

					versidad Intificia Variana
C L. B. Gutiérrez (UPB)	Basic Concepts			2025	23/24
	Systems	Classification of Mathematical models			
Classification of Mathematical models					

- According to the linearity:
 - Linear systems.

C I B Gutiérrez (LIPP

- A system is said to be linear if given that $y_1(t) = \mathcal{H}\left\{u_1(t)\right\}$ and $y_2(t) = \mathcal{H}\left\{u_2(t)\right\}$, that implies that $\mathcal{H}\left\{a_1u_1(t) + a_2u_2(t)\right\} = a_1\mathcal{H}\left\{u_1(t)\right\} + a_2\mathcal{H}\left\{u_2(t)\right\} = a_1y_1(t) + a_2y_2(t)$ for any $a_1, a_2 \in \mathbb{R}$, and any $u_1(t), u_2(t)$.
- Nonlinear systems.

A system is said to be nonlinear if it is not a linear system.

Universidad Pontificia Bolivariana